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Introduction

Let I be a real interval, that is, a nonempty, connected and bounded subset
of R. An n-dimensionalChebyshev systemon I consists of a set of real valued
continuous functionsω1, . . . , ωn and is determined by the property that eachn
points ofI × R with distinct first coordinates can uniquely be interpolated by a
linear combination of the functions. More precisely, we have the following

DEFINITION. Let I ⊂ R be a real interval andω1, . . . , ωn : I → R be
continuous functions. Denote the column vector whose components areω1, . . . , ωn

in turn by ωωωωωωωωω, that is, ωωωωωωωωω := (ω1, . . . , ωn). We say thatωωωωωωωωω is a Chebyshev system
overI if, for all elementsx1 < · · · < xn of I, the following inequality holds:∣∣ ωωωωωωωωω(x1) · · · ωωωωωωωωω(xn)

∣∣ > 0.

In fact, it suffices to assume that the determinant above is nonvanishing when-
ever the argumentsx1, . . . , xn are pairwise distinct points of the domain. Indeed,
Bolzano’s theorem guarantees that its sign is constant if the arguments are sup-
posed to be in an increasing order, hence the componentsω1, . . . , ωn can always
be rearranged such thatωωωωωωωωω fulfills the requirement of the definition. However, con-
sidering Chebyshev systems as vectors of functions instead of sets of functions is
widely accepted in the technical literature and also turns out to be very convenient
in our investigations.

Without claiming completeness, let us list some important and classical exam-
ples of Chebyshev systems. In each exampleωωωωωωωωω is defined on an arbitraryI ⊂ R
except for the last one whereI ⊂]− π

2 , π
2 [.

• polynomial system:ωωωωωωωωω(x) := (1, x, . . . , xn)
• exponential system:ωωωωωωωωω(x) := (1, expx, . . . , expnx)
• hyperbolic system:ωωωωωωωωω(x) := (1, coshx, sinhx, . . . , coshnx, sinhnx)
• trigonometric system:ωωωωωωωωω(x) := (1, cos x, sinx, . . . , cos nx, sinnx).

We make no attempt here to present an exhaustive account of the theory of
Chebyshev systems, just mention that, motivated by some results of A. A. Markov,
the first systematic investigations of the geometric theory of Chebyshev systems
were done by M. G. Krein. However, let us note that Chebyshev systems play an
important role, sometimes indirectly, in numerous fields of mathematics, for exam-
ple, in the theory of approximation, numerical analysis and the theory of inequali-
ties. The books [KS66] and [Kar68] contain a rich literature and bibliography of
the topics for the interested reader.

1



2 INTRODUCTION

The notion of convexity can also be extended applying Chebyshev systems:

DEFINITION. Let ωωωωωωωωω = (ω1, . . . , ωn) be a Chebyshev system over the real
interval I. A functionf : I → R is said to begeneralized convex with respect to
ωωωωωωωωω if, for all elementsx0 < · · · < xn of I, it satisfies the inequality

(−1)n

∣∣∣∣ f(x0) · · · f(xn)
ωωωωωωωωω(x0) · · · ωωωωωωωωω(xn)

∣∣∣∣ ≥ 0.

There are other alternatives to express thatf is generalized convex with re-
spect toωωωωωωωωω, for example,f is generalizedωωωωωωωωω-convexor simply ωωωωωωωωω-convex. If the
underlyingn-dimensional Chebyshev system can uniquely be identified from the
context, we briefly say thatf is generalizedn-convex.

If ωωωωωωωωω is the polynomial Chebyshev system, the definition leads to the notion of
higher-order monotonicity which was introduced and studied by T. Popoviciu in a
sequence of papers [Pop36, Pop38b, Pop38a, Pop39b, Pop39a, Pop40c, Pop40e,
Pop40a, Pop40f, Pop40d, Pop40b, Pop41, Pop42b, Pop42a, Pop42c, Pop43].
A summary of these results can be found in [Pop44] and also in [Kuc85]. For
the sake of unique terminology, throughout the dissertation Popoviciu’s setting
is called polynomial convexity. That is, a functionf : I → R is said to be
polynomiallyn-convexif, for all elementsx0 < · · · < xn of I, it satisfies the
inequality

(−1)n

∣∣∣∣∣∣∣∣∣∣∣

f(x0) . . . f(xn)
1 . . . 1
x0 . . . xn
...

...
...

xn−1
0 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
≥ 0.

Observe that polynomially2-convex functions are exactly the “standard” convex
ones. The case, when the “generalized” convexity notion is induced by the spe-
cial two dimensional Chebyshev systemω1(x) := 1 andω2(x) := x, is termed
standard settingandstandard convexity, respectively.

The integral average of any standard convex functionf : [a, b] → R can be
estimated from the midpoint and the endpoints of the domain as follows:

f

(
a + b

2

)
≤
∫ b

a
f(x)dx ≤ f(a) + f(b)

2
.

This is the well known Hadamard’s inequality ([Had93]) or, as it is quoted for
historical reasons (see [ML85 ] for interesting remarks), the Hermite–Hadamard-
inequality.

The aim of the dissertation is to verify analogous inequalities for generalized
convex functions, that is, to give lower and upper estimations for the integral av-
erage of the function using certain base points of the domain. Of course, the base
points are supposed to depend only on the underlying Chebyshev system of the
induced convexity.
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For this purpose, we shall follow an inductive approach since it seems to have
more advantages than the deductive one. First of all, it makes the original motiva-
tions clear; on the other hand, it allows us to use the most suitable mathematical
tools. Hence sophisticated proofs that sometimes occur when using deductive ap-
proach can also be avoided.

CHAPTER 1 investigates the case of polynomial convexity. The base points of
the Hermite–Hadamard-type inequalities turn out to be the zeros of certain orthog-
onal polynomials. The main tools of the chapter are based on some methods of
numerical analysis, like Gauss quadrature formula and Hermite-interpolation. A
smoothing technique and two theorems of Popoviciu are also crucial.

In CHAPTER 2 we present Hermite–Hadamard-type inequalities for general-
ized 2-convex functions. The most important auxiliary result of the proof is a
characterization theorem which, in the standard setting, reduces to the well known
characterization properties of convex functions. Another theorem of the chap-
ter establishes a tight relationship between standard and generalized2-convexity.
This result has important regularity consequences and is also essential in verifying
Hermite–Hadamard-type inequalities.

The general case is studied in CHAPTER 3. The main results guarantee only
the existence and also the uniqueness of the base points of the Hermite–Hadamard-
type inequalities but offer no explicit formulae for determining them. The main
tool of the chapter is the Krein–Markov theory of moment spaces induced by
Chebyshev systems. In some special cases (when the dimension of the under-
lying Chebyshev systems are “small”), an elementary alternative approach is also
presented.

CHAPTER 4 is devoted to showing that, at least in the two dimensional case
and requiring weak regularity conditions, Hermite–Hadamard-type inequalities are
not merely the consequences of generalized convexity, but they also characterize
it.

Specializing the members of Chebyshev systems, several applications and ex-
amples are presented for concrete Hermite–Hadamard-type inequalities in both
the cases of polynomial convexity and generalized2-convexity. As a simple con-
sequence, the classical Hermite–Hadamard inequality is among the corollaries in
each cases, too.

The results of the dissertation can be found in [BP02, BP03, BP04, BP05, BP]
and [Bes04]. In the sequel, we present them without any further references to the
mentioned papers.





CHAPTER 1

Polynomial convexity

The main results of this chapter state Hermite–Hadamard-type inequalities for
polynomially convex functions. Let us recall that a functionf : I → R is said to
bepolynomiallyn-convexif, for all elementsx0 < · · · < xn of I, it satisfies the
inequality

(−1)n

∣∣∣∣∣∣∣∣∣∣∣

f(x0) . . . f(xn)
1 . . . 1
x0 . . . xn
...

...
...

xn−1
0 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
≥ 0.

In order to determine the base points and the coefficients of the inequalities,
Gauss-type quadrature formulae are applied. Then, using the remainder term of
the Hermite-interpolation, the main results follow immediately for “sufficiently
smooth” functions due to the next two theorems of Popoviciu:

THEOREM A. ([Kuc85, Theorem 1. p. 387])Assume thatf : I → R is
continuous andn times differentiable on the interior ofI. Then,f is polynomially
n-convex if and only iff (n) ≥ 0 on the interior ofI.

THEOREM B. ([Kuc85, Theorem 1. p. 391])Assume thatf : I → R is poly-
nomiallyn-convex andn ≥ 2. Then,f is (n − 2) times differentiable andf (n−2)

is continuous on the interior ofI.

To drop the regularity assumptions, a smoothing technique is developed that
guarantees the approximation of polynomially convex functions with smooth poly-
nomially convex ones.

1.1. Orthogonal polynomials and basic quadrature formulae

In what follows, ρ denotes a positive, locally integrable function (shortly:
weight function) on an intervalI. The polynomialsP andQ are said to beorthog-
onal on[a, b] ⊂ I with respect to the weight functionρ or simplyρ-orthogonal on
[a, b] if

〈P,Q〉ρ :=
∫ b

a
PQρ = 0.

5



6 CHAPTER 1. POLYNOMIAL CONVEXITY

A system of polynomials is called aρ-orthogonal polynomial system on[a, b] ⊂ I
if each member of the system isρ-orthogonal to the others on[a, b]. Define the
momentsof ρ by the formulae

µk :=
∫ b

a
xkρ(x)dx (k = 0, 1, 2, . . .).

Then, thenth degree member of theρ-orthogonal polynomial system on[a, b] has
the following representation via the moments ofρ:

Pn(x) :=

∣∣∣∣∣∣∣∣∣
1 µ0 · · · µn−1

x µ1 · · · µn
...

...
...

...
xn µn · · · µ2n−1

∣∣∣∣∣∣∣∣∣ .
Clearly, it suffices to show thatPn is ρ-orthogonal to the special polynomials
1, x, . . . , xn−1. Indeed, fork = 1, . . . , n, the first and the(k + 1)st columns of
the determinant〈Pn(x), xk−1〉ρ are linearly dependent according to the definition
of the moments.

In fact, the moments and the orthogonal polynomials depend heavily on the
interval [a, b]. Therefore, we use the notionsµk;[a,b] andPn;[a,b] instead ofµk and
Pn above when we want to or have to emphasize the dependence on the underlying
interval.

Throughout this chapter, the following property of the zeros of orthogonal
polynomials plays a key role (see [Szeg39]). Let Pn denote thenth degree member
of theρ-orthogonal polynomial system on[a, b]. Then,Pn hasn pairwise distinct
zerosξ1 < · · · < ξn in ]a, b[.

Let us consider the following∫ b

a
fρ =

n∑
k=1

ckf(ξk)(1.1)

∫ b

a
fρ = c0f(a) +

n∑
k=1

ckf(ξk)(1.2)

∫ b

a
fρ =

n∑
k=1

ckf(ξk) + cn+1f(b)(1.3)

∫ b

a
fρ = c0f(a) +

n∑
k=1

ckf(ξk) + cn+1f(b)(1.4)

Gauss-type quadrature formulae where the coefficients and the base points are to
be determined so that (1.1), (1.2), (1.3) and (1.4) be exact whenf is a polynomial
of degree at most2n − 1, 2n, 2n and2n + 1, respectively. The subsequent four
theorems investigate these cases.
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THEOREM 1.1. Let Pn be thenth degree member of the orthogonal polyno-
mial system on[a, b] with respect to the weight functionρ. Then(1.1) is exact for
polynomialsf of degree at most2n − 1 if and only if ξ1, . . . , ξn are the zeros of
Pn, and

(1.5) ck =
∫ b

a

Pn(x)
(x− ξk)P ′

n(ξk)
ρ(x)dx.

Furthermore,ξ1, . . . , ξn are pairwise distinct elements of]a, b[, andck ≥ 0 for all
k = 1, . . . , n.

This theorem follows easily from well known results in numerical analysis (see
[HH94], [Joh66], [Szeg39]). For the sake of completeness, we provide a proof.

PROOF. First assume thatξ1, . . . , ξn are the zeros of the polynomialPn and,
for all k = 1, . . . , n, denote the primitive Lagrange-interpolation polynomials by
Lk : [a, b] → R. That is,

Lk(x) :=


Pn(x)

(x− ξk)P ′
n(ξk)

if x 6= ξk

1 if x = ξk.

If Q is a polynomial of degree at most2n − 1, then, using Euclidian algorithm,
Q can be written in the formQ = PPn + R wheredeg P,deg R ≤ n − 1. The
inequalitydeg P ≤ n− 1 implies theρ-orthogonality ofP andPn:∫ b

a
PPnρ = 0.

On the other hand,deg R ≤ n − 1 yields thatR is equal to its Lagrange-
interpolation polynomial:

R =
n∑

k=1

R(ξk)Lk.

Therefore, considering the definition of the coefficientsc1, . . . , cn in formula (1.5),
we obtain that∫ b

a
Qρ =

∫ b

a
PPnρ +

∫ b

a
Rρ =

n∑
k=1

R(ξk)
∫ b

a
Lkρ

=
n∑

k=1

ckR(ξk) =
n∑

k=1

ck

(
P (ξk)Pn(ξk) + R(ξk)

)
=

n∑
k=1

ckQ(ξk).

That is, the quadrature formula (1.1) is exact for polynomials of degree at most
2n− 1.

Conversely, assume that (1.1) is exact for polynomials of degree at most2n−1.
Define the polynomialQ by the formulaQ(x) := (x− ξ1) · · · (x− ξn) and letP
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be a polynomial of degree at mostn− 1. Then,deg PQ ≤ 2n− 1 thus∫ b

a
PQρ = c1P (ξ1)Q(ξ1) + · · ·+ cnP (ξn)Q(ξn) = 0.

ThereforeQ is ρ-orthogonal toP . The uniqueness ofPn implies thatPn = anQ,
andξ1, . . . , ξn are the zeros ofPn. Furthermore, (1.1) is exact if we substitute
f := Lk andf := L2

k, respectively. The first substitution gives (1.5), while the
second one shows the nonnegativity ofck. For further details, consult the book
[Szeg39, p. 44]. �

THEOREM 1.2. Let Pn be thenth degree member of the orthogonal polyno-
mial system on[a, b] with respect to the weight functionρa(x) := (x − a)ρ(x).
Then(1.2) is exact for polynomialsf of degree at most2n if and only ifξ1, . . . , ξn

are the zeros ofPn, and

c0 =
1

P 2
n(a)

∫ b

a
P 2

n(x)ρ(x)dx,(1.6)

ck =
1

ξk − a

∫ b

a

(x− a)Pn(x)
(x− ξk)P ′

n(ξk)
ρ(x)dx.(1.7)

Furthermore,ξ1, . . . , ξn are pairwise distinct elements of]a, b[, andck ≥ 0 for all
k = 0, . . . , n.

PROOF. Assume that the quadrature formula (1.2) is exact for polynomials of
degree at most2n. If P is a polynomial of degree at most2n− 1, then∫ b

a
Pρa =

∫ b

a
(x− a)P (x)ρ(x)dx = c1(ξ1 − a)P (ξ1) + · · ·+ cn(ξn − a)P (ξn).

Applying Theorem 1.1 to the weight functionρa and the coefficients

ca;k := ck(ξk − a),

we get thatξ1, . . . , ξn are the zeros ofPn and, for allk = 1, . . . , n, the coefficients
ca;k can be computed using formula (1.5). Therefore,

ck(ξk − a) =
∫ b

a

Pn(x)
(x− ξk)P ′

n(ξk)
ρa(x)dx =

∫ b

a

(x− a)Pn(x)
(x− ξk)P ′

n(ξk)
ρ(x)dx.

Substitutingf := P 2
n into (1.1), we obtain that

c0 =
1

P 2
n(a)

∫ b

a
P 2

nρ.

Thus (1.6) and (1.7) are valid, andck ≥ 0 for k = 0, 1, . . . , n.
Conversely, assume thatξ1, . . . , ξn are the zeros of the orthogonal polynomial

Pn, and the coefficientsc1, . . . , cn are given by the formula (1.7). Define the
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coefficientc0 by c0 =
∫ b
a ρ − (c1 + · · · + cn). If P is a polynomial of degree

at most2n, then there exists a polynomialQ with deg Q ≤ 2n− 1 such that

P (x) = (x− a)Q(x) + P (a).

Indeed, the polynomialP (x) − P (a) vanishes at the pointx = a hence it is
divisible by(x− a). Applying Theorem 1.1 again to the weight functionρa,∫ b

a
Qρa = ca;1Q(ξ1) + · · ·+ ca;nQ(ξn)

holds. Thus, using the definition ofc0, the representation of the polynomialP and
the quadrature formula above, we have that∫ b

a
P (x)ρ(x)dx =

∫ b

a

(
(x− a)Q(x) + P (a)

)
ρ(x)dx

=
n∑

k=1

ck(ξk − a)Q(ξk) +
n∑

k=0

P (a)ck

= c0P (a) +
n∑

k=1

ck

(
(ξk − a)Q(ξk) + P (a)

)
= c0P (a) +

n∑
k=1

ckP (ξk),

which yields that the quadrature formula (1.2) is exact for polynomials of degree
at most2n. Therefore, substitutingf := P 2

n into (1.2), we get formula (1.6). �

THEOREM 1.3. Let Pn be thenth degree member of the orthogonal polyno-
mial system on[a, b] with respect to the weight functionρb(x) := (b − x)ρ(x).
Then(1.3) is exact for polynomialsf of degree at most2n if and only ifξ1, . . . , ξn

are the zeros ofPn, and

ck =
1

b− ξk

∫ b

a

(b− x)Pn(x)
(x− ξk)P ′

n(ξk)
ρ(x)dx,(1.8)

cn+1 =
1

P 2
n(b)

∫ b

a
P 2

n(x)ρ(x)dx.(1.9)

Furthermore,ξ1, . . . , ξn are pairwise distinct elements of]a, b[, andck ≥ 0 for all
k = 1, . . . , n + 1.

HINT. Applying a similar argument to the previous one to the weight function
ρb, we obtain the statement of the theorem. �
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THEOREM 1.4. Let Pn be thenth degree member of the orthogonal polyno-
mial system on[a, b] with respect to the weight functionρb

a. Then(1.4) is exact for
polynomialsf of degree at most2n + 1 if and only if ξ1, . . . , ξn are the zeros of
Pn, and

c0 =
1

(b− a)P 2
n(a)

∫ b

a
(b− x)P 2

n(x)ρ(x)dx,(1.10)

ck =
1

(b− ξk)(ξk − a)

∫ b

a

(b− x)(x− a)Pn(x)
(x− ξk)P ′

n(ξk)
ρ(x)dx,(1.11)

cn+1 =
1

(b− a)P 2
n(b)

∫ b

a
(x− a)P 2

n(x)ρ(x)dx.(1.12)

Furthermore,ξ1, . . . , ξn are pairwise distinct elements of]a, b[, andck ≥ 0 for all
k = 0, . . . , n + 1.

PROOF. Assume that the quadrature formula (1.4) is exact for polynomials of
degree at most2n + 1. If P is a polynomial of degree at most2n− 1, then∫ b

a
Pρb

a =
∫ b

a
(b− x)(x− a)P (x)ρ(x)dx

= c1(b− ξ1)(ξ1 − a)P (ξ1) + · · ·+ cn(b− ξn)(ξn − a)P (ξn).

Applying Theorem 1.1 to the weight functionρb
a and the coefficients

ca,b;k := ck(b− ξk)(ξk − a),

we get thatξ1, . . . , ξn are the zeros ofPn and, for allk = 1, . . . , n, the coefficients
ca,b;k can be computed using formula (1.5). Therefore,

ck(b− ξk)(ξk − a) =
∫ b

a

Pn(x)
(x− ξk)P ′

n(ξk)
ρb

a(x)dx

=
∫ b

a

(b− x)(x− a)Pn(x)
(x− ξk)P ′

n(ξk)
ρ(x)dx.

Substitutingf := (b− x)P 2
n(x) andf := (x− a)P 2

n(x) into (1.1), we obtain that

c0 =
1

(b− a)P 2
n(a)

∫ b

a
(b− x)P 2

n(x)ρ(x)dx,

cn+1 =
1

(b− a)P 2
n(b)

∫ b

a
(x− a)P 2

n(x)ρ(x)dx.

Thus (1.10), (1.11) and (1.12) are valid, furthermore,ck ≥ 0 for k = 0, . . . , n +1.
Conversely, assume thatξ1, . . . , ξn are the zeros ofPn, and the coefficients

c1, . . . , cn are given by the formula (1.11). Define the coefficientsc0 andcn+1 by
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the equations∫ b

a
(b− x)ρ(x)dx = c0(b− a) +

n∑
k=1

ck(b− ξk)∫ b

a
(x− a)ρ(x)dx =

n∑
k=1

ck(ξk − a) + cn+1(b− a).

If P is a polynomial of degree at most2n + 1, then there exists a polynomialQ
with deg Q ≤ 2n− 1 such that

(b− a)P (x) = (b− x)(x− a)Q(x) + (x− a)P (b) + (b− x)P (a).

Indeed, the polynomial(b− a)P (x)− (x− a)P (b)− (b− x)P (a) is divisible by
(b− x)(x− a) sincex = a andx = b are its zeros. Applying Theorem 1.1 again,∫ b

a
Qρb

a = ca,b;1Q(ξ1) + · · ·+ ca,b;nQ(ξn)

holds. Thus, using the definition ofc0 andcn+1, the representation of the polyno-
mial P and the quadrature formula above, we have that

(b− a)
∫ b

a
P (x)ρ(x)dx =

=
∫ b

a

(
(b− x)(x− a)Q(x) + (x− a)P (b) + (b− x)P (a)

)
ρ(x)dx

=
n∑

k=1

ck(b− ξk)(ξk − a)Q(ξk)

+P (b)
∫ b

a
(x− a)ρ(x)dx + P (a)

∫ b

a
(b− x)ρ(x)dx

=
n∑

k=1

ck(b− ξk)(ξk − a)Q(ξk)

+c0(b− a)P (a) +
n∑

k=1

ck(b− ξk)P (a)

+
n∑

k=1

ck(ξk − a)P (b) + cn+1(b− a)P (b)

=
n∑

k=1

ck

(
(b− ξk)(ξk − a)Q(ξk) + (ξk − a)P (b) + (b− ξk)P (a)

)
+c0(b− a)P (a) + cn+1(b− a)P (b)

= c0(b− a)P (a) +
n∑

k=1

ck(b− a)P (ξk) + cn+1(b− a)P (b),
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which yields that the quadrature formula (1.4) is exact for polynomials of degree
at most2n+1. Therefore, substitutingf := (b−x)P 2

n(x) andf := (x−a)P 2
n(x)

into (1.4), formulae (1.10) and (1.12) follow. �

Let f : [a, b] → R be a differentiable function,x1, . . . , xn be pairwise dis-
tinct elements of[a, b], and1 ≤ r ≤ n be a fixed integer. Denote the Hermite
interpolation polynomial byH that satisfies the following conditions:

H(xk) = f(xk) (k = 1, . . . , n)
H ′(xk) = f ′(xk) (k = 1, . . . , r).

We recall thatdeg H = n + r − 1. From a well known result, (see [HH94, Sec.
5.3, pp. 230-231]), for allx ∈ [a, b] there existsθ such that

(1.13) f(x)−H(x) =
ωn(x)ωr(x)

(n + r)!
f (n+r)(θ),

where

ωk(x) = (x− x1) · · · (x− xk).

1.2. An approximation theorem

It is well known that there exists a functionϕ which possesses the following
properties:

(i) ϕ : R → R+ is C∞, i. e., it is infinitely many times differentiable;
(ii) suppϕ ⊂ [−1, 1];

(iii)
∫

R ϕ = 1.

Usingϕ, one can define the functionϕε for all ε > 0 by the formula

ϕε(x) =
1
ε
ϕ
(x

ε

)
(x ∈ R).

Then, as it can easily be checked,ϕε satisfies the following conditions:

(i’) ϕε : R → R+ is C∞;
(ii’) suppϕε ⊂ [−ε, ε];

(iii’)
∫

R ϕε = 1.

Let I ⊂ R be a nonempty open interval,f : I → R be a continuous function,
and chooseε > 0. Denote the convolution off andϕε by fε, that is

fε(x) :=
∫

R
f̄(y)ϕε(x− y)dy (x ∈ R)

wheref̄(y) = f(y) if y ∈ I, otherwisef̄(y) = 0. Let us recall, thatfε → f
uniformly asε → 0 on each compact subinterval ofI, andfε is infinitely many
times differentiable onR. These important results can be found for example in
[Zei86, p. 549].
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THEOREM 1.5. Let I ⊂ R be an open interval,f : I → R be a polynomi-
ally n-convex continuous function. Then, for all compact subintervals[a, b] ⊂ I,
there exists a sequence of polynomiallyn-convex andC∞ functions(fk) which
converges uniformly tof on [a, b].

PROOF. Choosea, b ∈ I andε0 > 0 such that the inclusion[a−ε0, b+ε0] ⊂ I
hold. We show that the functionτεf : [a, b] → R defined by the formula

τεf(x) := f(x− ε)

is polynomiallyn-convex on[a, b] for 0 < ε < ε0. Let a ≤ x0 < · · · < xn ≤ b
andk ≤ n− 1 be fixed. By induction, we are going to verify the identity

(1.14)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τεf(x0) · · · τεf(xn)
1 · · · 1
x0 · · · xn
...

...
...

xk−1
0 · · · xk−1

n

xk
0 · · · xk

n
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τεf(x0) · · · τεf(xn)
1 · · · 1

x0 − ε · · · xn − ε
...

...
...

(x0 − ε)k−1 · · · (xn − ε)k−1

xk
0 · · · xk

n
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

If k = 1, then this equation obviously holds. Assume, for a fixed positive integer
k ≤ n− 2, that (1.14) remains true. The binomial theorem implies the identity

xk =
(

k

0

)
εk +

(
k

1

)
εk−1(x− ε) + · · ·+

(
k

k

)
(x− ε)k.

That is,(x−ε)k is the linear combination of the elements1, x−ε, . . . , (x−ε)k and
xk. Therefore, adding the adequate linear combination of the2nd, . . . , (k + 1)st

rows to the(k + 2)nd row, we arrive at the equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τεf(x0) · · · τεf(xn)
1 · · · 1

x0 − ε · · · xn − ε
...

...
...

(x0 − ε)k−1 · · · (xn − ε)k−1

xk
0 · · · xk

n

xk+1
0 · · · xk+1

n
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τεf(x0) · · · τεf(xn)
1 · · · 1

x0 − ε · · · xn − ε
...

...
...

(x0 − ε)k−1 · · · (xn − ε)k−1

(x0 − ε)k · · · (xn − ε)k

xk+1
0 · · · xk+1

n
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Hence formula (1.14) holds for all fixed positivek whenever1 ≤ k ≤ n − 1.
The particular casek = n− 1 gives the polynomialn-convexity ofτεf . Applying
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integral transformation and the previous result, we get that

(−1)n

∣∣∣∣∣∣∣∣∣∣∣

fε(x0) · · · fε(xn)
1 · · · 1
x0 · · · xn
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
=

=
∫

R
(−1)n

∣∣∣∣∣∣∣∣∣∣∣

f̄(t)ϕε(x0 − t) · · · f̄(t)ϕε(xn − t)
1 · · · 1
x0 · · · xn
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
dt

=
∫

R
(−1)n

∣∣∣∣∣∣∣∣∣∣∣

f̄(x0 − s) · · · f̄(xn − s)
1 · · · 1
x0 · · · xn
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
ϕε(s)ds

=
∫

R
(−1)n

∣∣∣∣∣∣∣∣∣∣∣

τsf(x0) · · · τsf(xn)
1 · · · 1
x0 · · · xn
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
ϕε(s)ds ≥ 0,

which shows the polynomialn-convexity offε on [a, b] for 0 < ε < ε0.
To complete the proof, choose a positive integern0 such that the relation1n0

<

ε0 hold. If we defineεk andfk by εk := 1
n0+k andfk := fεk

for k ∈ N, then
0 < εk < ε0 thus(fk)∞k=1 satisfies the requirements of the theorem. �

1.3. Hermite–Hadamard-type inequalities

In the sequel, we shall need two additional auxiliary results. The firs one
investigates the convergence properties of the zeros of orthogonal polynomials.

LEMMA 1.6. Let ρ be a weight function on[a, b] furthermore(aj) be strictly
monotone decreasing,(bj) be strictly monotone increasing sequences such that
aj → a, bj → b anda1 < b1. Denote the zeros ofPm;j by ξ1;j , . . . , ξm;j where
Pm;j is themth degree member of theρ|[aj ,bj ]-orthogonal polynomial system on

[aj , bj ], and denote the zeros ofPm by ξ1, . . . , ξm wherePm is themth degree
member of theρ-orthogonal polynomial system on[a, b]. Then,

lim
j→∞

ξk;j = ξk (k = 1, . . . , n).
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PROOF. Observe first that the mapping(a, b) 7→ µk;[a,b] is continuous, there-
foreµk;[aj ,bj ] → µk;[a,b] hencePm;j → Pm pointwise according to the representa-
tion of orthogonal polynomials. Takeε > 0 such that

]ξk − ε, ξk + ε[⊂]a, b[

]ξk − ε, ξk + ε[∩]ξl − ε, ξl + ε[= ∅ (k 6= l, k, l ∈ {1, . . . ,m}).
The polynomialPm changes its sign on]ξk − ε, ξk + ε[ since it is of degreem and
it hasm pairwise distinct zeros; therefore, due to the pointwise convergence,Pm;j

also changes its sign on the same interval up to an index. That is, for sufficiently
largej, ξk;j ∈]ξk − ε, ξk + ε[. �

The other auxiliary result investigates the one-sided limits of polynomiallyn-
convex functions at the endpoints of the domain. Let us note that its first assertion
involves, in fact, two cases according to the parity of the convexity.

LEMMA 1.7. Letf : [a, b] → R be a polynomiallyn-convex function. Then,

(i) (−1)nf(a) ≥ lim supt→a+0(−1)nf(t);
(ii) f(b) ≥ lim supt→b−0 f(t).

PROOF. It suffices to restrict the investigations to the even case of assertion
(i) only since the proofs of the other ones are completely the same. For the sake of
brevity, we shall use the notationf+(a) := lim supt→a+0 f(t). Take the elements
x0 := a < x1 := t < · · · < xn of [a, b]. Then, the (even order) polynomial
convexity off implies∣∣∣∣∣∣∣∣∣∣∣

f(a) f(t) f(x2) . . . f(xn)
1 1 1 . . . 1
a t x2 . . . xn
...

...
...

...
...

an−1 tn−1 xn−1
2 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
≥ 0.

Therefore, taking the limsup ast → a + 0, we obtain that∣∣∣∣∣∣∣∣∣∣∣

f(a) f+(a) f(x2) . . . f(xn)
1 1 1 . . . 1
a a x2 . . . xn
...

...
...

...
...

an−1 an−1 xn−1
2 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
≥ 0.

The adjoint determinants of the elementsf(x2), . . . , f(xn) in the first row are
equal to zero since their first and second columns coincide; on the other hand,
f(a) andf+(a) have the same (positive) Vandermonde-type adjoint determinant.
Hence, applying the expansion theorem on the first row, we obtain the desired
inequality

f(a)− f+(a) ≥ 0.

�
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The main results concern the cases of odd and even order polynomial convex-
ity separately in the subsequent two theorems.

THEOREM 1.8. Let ρ : [a, b] → R be a positive integrable function. Denote
the zeros ofPm by ξ1, . . . , ξm wherePm is themth degree member of the orthog-
onal polynomial system on[a, b] with respect to the weight function(x − a)ρ(x),
and denote the zeros ofQm by η1, . . . , ηm whereQm is themth degree member
of the orthogonal polynomial system on[a, b] with respect to the weight function
(b−x)ρ(x). Define the coefficientsα0, . . . , αm andβ1, . . . , βm+1 by the formulae

α0 :=
1

P 2
m(a)

∫ b

a
P 2

m(x)ρ(x)dx,

αk :=
1

ξk − a

∫ b

a

(x− a)Pm(x)
(x− ξk)P ′

m(ξk)
ρ(x)dx

and

βk :=
1

b− ηk

∫ b

a

(b− x)Qm(x)
(x− ηk)Q′

m(ηk)
ρ(x)dx,

βm+1 :=
1

Q2
m(b)

∫ b

a
Q2

m(x)ρ(x)dx.

If a functionf : [a, b] → R is polynomially(2m + 1)-convex, then it satisfies the
following Hermite–Hadamard-type inequality

α0f(a) +
m∑

k=1

αkf(ξk) ≤
∫ b

a
fρ ≤

m∑
k=1

βkf(ηk) + βm+1f(b).

PROOF. First assume thatf is (2m + 1) times differentiable. Then, accord-
ing to Theorem A,f (2m+1) ≥ 0 on ]a, b[. Let H be the Hermite interpolation
polynomial determined by the conditions

H(a) = f(a)
H(ξk) = f(ξk)
H ′(ξk) = f ′(ξk).

By the remainder term (1.13) of the Hermite interpolation, ifx is an arbitrary
element of]a, b[, then there existsθ ∈]a, b[ such that

f(x)−H(x) =
(x− a)(x− ξ1)2 · · · (x− ξm)2

(2m + 1)!
f (2m+1)(θ).

That is,fρ ≥ Hρ on [a, b] due to the nonnegativity off (2m+1) and the positivity
of ρ. On the other hand,H is of degree2m, therefore Theorem 1.2 yields that∫ b

a
fρ ≥

∫ b

a
Hρ = α0H(a) +

m∑
k=1

αkH(ξk) = α0f(a) +
m∑

k=1

αkf(ξk).
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For the general case, letf be an arbitrary polynomially(2m+1)-convex func-
tion. Without loss of generality we may assume thatm ≥ 1; in this case,f is
continuous (see Theorem B). Let(aj) and(bj) be sequences fulfilling the require-
ments of Lemma 1.6. According to Theorem 1.5, there exists a sequence ofC∞,
polynomially (2m + 1)-convex functions(fi;j) such thatfi;j → f uniformly on
[aj , bj ] asi → ∞. Denote the zeros ofPm;j by ξ1;j , . . . , ξm;j wherePm;j is the
mth degree member of the orthogonal polynomial system on[aj , bj ] with respect
to the weight function(x − a)ρ(x). Define the coefficientsα0;j , . . . , αm;j analo-
gously toα0, . . . , αm with the help ofPm;j . Then,ξk;j → ξk due to Lemma 1.6,
and henceαk;j → αk asj → ∞. Applying the previous step of the proof on the
smooth functions(fi;j), it follows that

α0;jfi;j(aj) +
m∑

k=1

αk;jfi;j(ξk;j) ≤
∫ bj

aj

fi;jρ.

Taking the limitsi →∞ and thenj →∞, we get the inequality

α0

(
lim inf
t→a+0

f(t)
)

+
m∑

k=1

αkf(ξk) ≤
∫ b

a
fρ.

This, together with Lemma 1.7, gives the left hand side inequality to be proved.
The proof of the right hand side inequality is analogous, therefore it is omitted.�

The second main result offers Hermite–Hadamard-type inequalities for even-
order polynomially convex functions. In this case, the symmetrical structure dis-
appears: the lower estimation involves none of the endpoints, while the upper
estimation involves both of them.

THEOREM 1.9. Let ρ : [a, b] → R be a positive integrable function. Denote
the zeros ofPm by ξ1, . . . , ξm wherePm is the mth degree member of the or-
thogonal polynomial system on[a, b] with respect to the weight functionρ(x), and
denote the zeros ofQm−1 by η1, . . . , ηm−1 whereQm−1 is the(m − 1)st degree
member of the orthogonal polynomial system on[a, b] with respect to the weight
function(b−x)(x−a)ρ(x). Define the coefficientsα1, . . . , αm andβ0, . . . , βm+1

by the formulae

αk :=
∫ b

a

Pm(x)
(x− ξk)P ′

m(ξk)
ρ(x)dx

and

β0 =
1

(b− a)Q2
m−1(a)

∫ b

a
(b− x)Q2

m−1(x)ρ(x)dx,

βk =
1

(b− ηk)(ξk − a)

∫ b

a

(b− x)(x− a)Qm−1(x)
(x− ηk)Q′

m−1(ηk)
ρ(x)dx,

βm+1 =
1

(b− a)Q2
m−1(b)

∫ b

a
(x− a)Q2

m−1(x)ρ(x)dx.
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If a function f : [a, b] → R is polynomially(2m)-convex, then it satisfies the
following Hermite–Hadamard-type inequality

m∑
k=1

αkf(ξk) ≤
∫ b

a
fρ ≤ β0f(a) +

m−1∑
k=1

βkf(ηk) + βmf(b).

PROOF. First assume thatf is n = 2m times differentiable. Thenf (2m) ≥ 0
on ]a, b[ according to Theorem B. Consider the Hermite interpolation polynomial
H that interpolates the functionf in the zeros ofPm in the following manner:

H(ξk) = f(ξk)
H ′(ξk) = f ′(ξk).

By the remainder term (1.13) of the Hermite interpolation, ifx is an arbitrary
element of]a, b[, then there existsθ ∈]a, b[ such that

f(x)−H(x) =
(x− ξ1)2 · · · (x− ξm)2

(2m)!
f (2m)(θ).

Hencefρ ≥ Hρ on [a, b] due to the nonnegativity off (2m) and the positivity ofρ.
On the other hand,H is of degree2m − 1, therefore Theorem 1.1 yields the left
hand side of the inequality to be proved:∫ b

a
fρ ≥

∫ b

a
Hρ =

m∑
k=1

αkH(ξk) =
m∑

k=1

αkf(ξk).

Now consider the Hermite interpolation polynomialH that interpolates the func-
tion f in the zeros ofQm−1 and in the endpoints of the domain in the following
way:

H(a) = f(a)
H(ηk) = f(ηk)
H ′(ηk) = f ′(ηk)

H(b) = f(b).

By the remainder term (1.13) of the Hermite interpolation, ifx is an arbitrary
element of]a, b[, then there existsθ ∈]a, b[ such that

f(x)−H(x) =
(x− a)(x− b)(x− η1)2 · · · (x− ηm−1)2

(2m)!
f (2m)(θ).

The factors of the right hand side are nonnegative except for the factor(x − b)
which is negative hencefρ ≤ Hρ. On the other hand,H is of degree2m − 1,
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therefore Theorem 1.4 yields the right hand side inequality to be proved:∫ b

a
fρ ≤

∫ b

a
Hρ = β0H(a) +

m−1∑
k=1

βkH(ηk) + βmH(b)

= β0f(a) +
m−1∑
k=1

βkf(ηk) + βmf(b).

From this point, an analogous argument to the corresponding part of the previous
proof gives the statement of the theorem without any differentiability assumptions
on the functionf . �

Specializing the weight functionρ ≡ 1, the roots of the inequalities can be
obtained as convex combinations of the endpoints of the domain. The coefficients
of the convex combinations are the zeros of certain orthogonal polynomials on
[0, 1] in both cases. Observe that interchanging the role of the endpoints in any
side of the inequality concerning the odd order case, we obtain the other side of
the inequality.

THEOREM1.10. Let, form ≥ 0, the polynomialPm be defined by the formula

Pm(x) :=

∣∣∣∣∣∣∣∣∣
1 1

2 · · · 1
m+1

x 1
3 · · · 1

m+2
...

...
...

...
xm 1

m+2 · · · 1
2m+1

∣∣∣∣∣∣∣∣∣ .
Then,Pm hasm pairwise distinct zerosλ1, . . . , λm in ]0, 1[. Define the coefficients
α0, . . . , αm by

α0 :=
1

P 2
m(0)

∫ 1

0
P 2

m(x)dx,

αk :=
1
λk

∫ 1

0

xPm(x)
(x− λk)P ′

m(λk)
dx.

If a functionf : [a, b] → R is polynomially(2m + 1)-convex, then it satisfies the
following Hermite–Hadamard-type inequality

α0f(a) +
m∑

k=1

αkf
(
(1− λk)a + λkb

)
≤ 1

b− a

∫ b

a
f(x)dx

≤
m∑

k=1

αkf
(
λka + (1− λk)b

)
+ α0f(b).

PROOF. Apply Theorem 1.8 in the particular setting whena := 0, b := 1 and
the weight function isρ ≡ 1. Then, as simple calculations show,Pm is exactly the
mth degree member of the orthogonal polynomial system on[0, 1] with respect to
the weight functionρ(x) = x (see the beginning of this chapter). Therefore,Pm
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hasm pairwise distinct zeros0 < λ1 < · · · < λm < 1, indeed. Moreover, the
coefficientsα0, . . . , αm have the form above. Define the functionF : [0, 1] → R
by the formula

F (t) := f
(
(1− t)a + tb

)
.

It is easy to check thatF is polynomially(2m + 1)-convex on the interval[0, 1].
Hence, applying Theorem 1.8 and the previous observations, it follows that∫ 1

0
F (t)dt ≥ α0F (0) +

m∑
k=1

αkF (λk)

= α0f(a) +
m∑

k=1

αkf
(
(1− λk)a + λkb

)
.

On the other hand, to complete the proof of the left hand side inequality, observe
that

1
b− a

∫ b

a
f(x)dx =

∫ 1

0
F (t)dt.

For verifying the right hand side one, define the functionϕ : [a, b] → R by the
formula

ϕ(x) := −f(a + b− x).

Then,ϕ is polynomially(2m+1)-convex on[a, b]. The previous inequality applied
on ϕ gives the upper estimation of the Hermite–Hadamard-type inequality forf .

�

THEOREM 1.11. Let, for m ≥ 1, the polynomialsPm andQm−1 be defined
by the formulae

Pm(x) :=

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

m
x 1

2 · · · 1
m+1

...
...

...
...

xm 1
m+1 · · · 1

2m

∣∣∣∣∣∣∣∣∣ ,

Qm−1(x) :=

∣∣∣∣∣∣∣∣∣∣
1 1

2·3 · · · 1
m(m+1)

x 1
3·4 · · · 1

(m+1)(m+2)
...

...
...

...
xm−1 1

(m+1)(m+2) · · · 1
(2m−1)2m

∣∣∣∣∣∣∣∣∣∣
.

Then,Pm hasm pairwise distinct zerosλ1, . . . , λm in ]0, 1[ andQm−1 hasm− 1
pairwise distinct zerosµ1, . . . , µm−1 in ]0, 1[, respectively. Define the coefficients
α1, . . . , αm andβ0, . . . , βm by

αk :=
∫ 1

0

Pm(x)
(x− λk)P ′

m(λk)
dx
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and

β0 :=
1

Q2
m−1(0)

∫ 1

0
(1− x)Q2

m−1(x)dx,

βk :=
1

(1− µk)µk

∫ 1

0

x(1− x)Qm−1(x)
(x− µk)Q′

m−1(µk)
dx,

βm :=
1

Q2
m−1(1)

∫ 1

0
xQ2

m−1(x)dx.

If a function f : [a, b] → R is polynomially(2m)-convex, then it satisfies the
following Hermite–Hadamard-type inequality

m∑
k=1

αkf
(
(1− λk)a + λkb

)
≤ 1

b− a

∫ b

a
f(x)dx

≤ β0f(a) +
m−1∑
k=1

βkf
(
(1− µk)a + µkb

)
+ βmf(b).

PROOF. Substitutea := 0, b := 1 andρ ≡ 1 into Theorem 1.9. Then,Pm

is exactly themth degree member of the orthogonal polynomial system on the
interval [0, 1] with respect to the weight functionρ(x) = 1; similarly, Qm−1 is
the(m− 1)st degree member of the orthogonal polynomial system on the interval
[0, 1] with respect to the weight functionρ(x) = (1− x)x. Therefore,Qm hasm
pairwise distinct zeros0 < λ1 < · · · < λm < 1 andQm−1 hasm − 1 pairwise
distinct zeros0 < µ1 < · · · < µm−1 < 1, indeed. Moreover, the coefficients
α1, . . . , αm andβ0, . . . , βm have the form above. To complete the proof, apply
Theorem 1.9 on the functionF : [0, 1] → R defined by the formula

F (t) := f
(
(1− t)a + tb

)
.

�

1.4. Applications

In the particular setting whenm = 1, Theorem 1.10 reduces to the classical
Hermite–Hadamard inequality:

COROLLARY 1.12. If f : [a, b] → R is a polynomially2-convex (i.e. convex)
function, then the following inequalities hold

f

(
a + b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)
2

.

In the subsequent corollaries we present Hermite–Hadamard-type inequali-
ties in those cases when the zeros of the polynomials in Theorem 1.10 and Theo-
rem 1.11 can explicitly be computed.



22 CHAPTER 1. POLYNOMIAL CONVEXITY

COROLLARY 1.13. If f : [a, b] → R is a polynomially3-convex function, then
the following inequalities hold

1
4
f(a) +

3
4
f

(
a + 2b

3

)
≤ 1

b− a

b∫
a

f(x)dx ≤ 3
4
f

(
2a + b

3

)
+

1
4
f(b).

COROLLARY 1.14. If f : [a, b] → R is a polynomially4-convex function, then
the following inequalities hold

1
2
f

(
3 +

√
3

6
a +

3−
√

3
6

b

)
+

1
2
f

(
3−

√
3

6
a +

3 +
√

3
6

b

)

≤ 1
b− a

b∫
a

f(x)dx ≤ 1
6
f(a) +

2
3
f

(
a + b

2

)
+

1
6
f(b).

COROLLARY 1.15. If f : [a, b] → R is a polynomially5-convex function, then
the following inequalities hold

1
9
f(a) +

16 +
√

6
36

f

(
4 +

√
6

10
a +

6−
√

6
10

b

)

+
16−

√
6

36
f

(
4−

√
6

10
a +

6 +
√

6
10

b

)
≤ 1

b− a

∫ b

a
f(x)dx

≤ 16−
√

6
36

f

(
6 +

√
6

10
a +

4−
√

6
10

b

)

+
16 +

√
6

36
f

(
6−

√
6

10
a +

4 +
√

6
10

b

)
+

1
9
f(b).

In some other cases analogous statements can be formulated applying Theo-
rem 1.11. For simplicity, instead of writing down these corollaries explicitly, we
shall present a list which contains the zeros ofPn (denoted byλk), and the coeffi-
cientsαk for the left hand side inequality furthermore the zeros ofQn (denoted by
µk), and the coefficientsβk for the right hand side inequality, respectively.

Casen = 6
The zeros ofP3:

5−
√

15
10

,
1
2
,

5 +
√

15
10

;

the corresponding coefficients:

5
18

,
4
9
,

5
18

.
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The zeros ofQ2:
5−

√
5

10
,

5 +
√

5
10

;

the corresponding coefficients:
1
12

,
5
12

,
5
12

,
1
12

.

Casen = 8
The zeros ofP4:

1
2
−
√

525 + 70
√

30
70

,
1
2
−
√

525− 70
√

30
70

,

1
2

+

√
525− 70

√
30

70
,

1
2

+

√
525 + 70

√
30

70
;

the corresponding coefficients:

1
4
−
√

30
72

,
1
4

+
√

30
72

,
1
4

+
√

30
72

,
1
4
−
√

30
72

.

The zeros ofQ3:
1
2
−
√

21
14

,
1
2
,

1
2

+
√

21
14

;

the corresponding coefficients:
1
20

,
49
180

,
16
45

,
49
180

,
1
20

.

Casen = 10
The zeros ofP5:

1
2
−
√

245 + 14
√

70
42

,
1
2
−
√

245− 14
√

70
42

,

1
2
,

1
2

+

√
245− 14

√
70

42
,

1
2

+

√
245 + 14

√
70

42
;

the corresponding coefficients:

322− 13
√

70
1800

,
322 + 13

√
70

1800
,

64
225

,
322 + 13

√
70

1800
,

322− 13
√

70
1800

.

The zeros ofQ4:

1
2
−
√

147 + 42
√

7
42

,
1
2
−
√

147− 42
√

7
42

,

1
2

+

√
147− 42

√
7

42
,

1
2

+

√
147 + 42

√
7

42
;

the corresponding coefficients:

1
30

,
14−

√
7

60
,

14 +
√

7
60

,
14 +

√
7

60
,

14−
√

7
60

,
1
30

.
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Casen = 12 (right hand side inequality)
The zeros ofQ5:

1
2
−
√

495 + 66
√

15
66

,
1
2
−
√

495− 66
√

15
66

,

1
2
,

1
2

+

√
495− 66

√
15

66
,

1
2

+

√
495 + 66

√
15

66
;

the corresponding coefficients:

1
42

,
124− 7

√
15

700
,

124 + 7
√

15
700

,
128
525

,

124 + 7
√

15
700

,
124− 7

√
15

700
,

1
42

.

During the investigations of the higher–order cases above, we can use the sym-
metry of the zeros of the orthogonal polynomials with respect to1/2, and therefore
the calculations lead to solving linear or quadratic equations. The first case where
“casus irreducibilis” appears isn = 7; similarly, this is the reason for presenting
only the right hand side inequality for polynomially12-convex functions.



CHAPTER 2

Generalized2-convexity

In terms of geometry, the Chebyshev property of a two dimensional system can
equivalently be formulated: the linear combinations of the members of the system
(shortly:generalized lines) are continuous furthermore any two points of the plain
with distinct first coordinates can be connected by a unique generalized line. That
is, generalized lines have the most important properties of affine functions. These
properties turn out to be so strong that most of the classical results of standard
convexity can be generalized for this setting.

First we investigate some basic properties of generalized lines of two di-
mensional Chebyshev systems. Then the most important tool of the chapter,
a characterization theorem is proved for generalized2-convex functions. Two
consequences of this theorem, namely the existence of generalized support lines
and the property of generalized chords are crucial to verify Hermite–Hadamard-
type inequalities. Another result states a tight connection between standard and
(ω1, ω2)-convexity, and also guarantees the integrability of(ω1, ω2)-convex func-
tions. Some classical results of the theory of convex functions, like their represen-
tation and stability are also generalized for this setting.

2.1. Characterizations via generalized lines

Let us recall that(ω1, ω2) is said to be aChebyshev systemover an intervalI
if ω1, ω2 : I → R are continuous functions and, for all elementsx < y of I,∣∣∣∣ ω1(x) ω1(y)

ω2(x) ω2(y)

∣∣∣∣ > 0.

Some concrete examples on Chebyshev systems are presented in the last section
of the chapter. Given a Chebyshev system(ω1, ω2), a functionf : I → R is called
generalized convex with respect to(ω1, ω2) or shortly:generalized2-convexif, for
all elementsx < y < z of I, it satisfies the inequality∣∣∣∣∣∣

f(x) f(y) f(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ ≥ 0.

Clearly, in the standard setting this definition reduces to the notion of (ordinary)
convexity. Let(ω1, ω2) be a Chebyshev system on an intervalI, and denote the set
of all linear combinations of the functionsω1 andω2 by L(ω1, ω2). We say that a

25
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functionω : I → R is ageneralized lineif it belongs to the linear hullL(ω1, ω2).
The properties of generalized lines play the key role in our further investigations;
first we need the following simple but useful ones.

LEMMA 2.1. Let(ω1, ω2) be a Chebyshev system over an intervalI. Then, two
different generalized lines ofL(ω1, ω2) have at most one common point; moreover,
if two different generalized lines have the same value at someξ ∈ I◦, then the
difference of the lines is positive on one side ofξ while negative on the other side
of ξ. In particular, ω1 andω2 have at most one zero; moreover, ifω1 (resp.,ω2)
vanishes at someξ ∈ I◦, thenω1 is positive on one side ofξ while negative on the
other.

PROOF. Due to the linear structure ofL(ω1, ω2), without loss of generality
we may assume that one of the lines is the constant zero line. Then, the other
generalized lineω has the representationαω1 + βω2, with α2 + β2 > 0.

The first assertion of the theorem is equivalent to the property thatω has at
most one zero. To show this, assume indirectly thatω(ξ) andω(η) equal zero for
ξ 6= η; that is,

αω1(ξ) + βω2(ξ) = 0
αω1(η) + βω2(η) = 0.

By the Chebyshev property of(ω1, ω2), the base determinant of the system is non-
vanishing, therefore the system has only trivial solutionsα = 0 andβ = 0 which
contradicts the propertyα2 + β2 > 0.

An equivalent formulation of the second assertion is the following: ifω(ξ) = 0
for some interior pointξ, thenω > 0 on one side ofξ while ω < 0 on the other.
If this is not true, then, according to the previous result and Bolzano’s theorem,
ω is strictly positive (or negative) on both sides ofξ. For simplicity, assume that
ω(t) > 0 for t 6= ξ. Define the generalized lineω∗ by ω∗ := −βω1 + αω2. Then,
(ω, ω∗) is also a Chebyshev system: ifx < y are elements ofI, then∣∣∣∣ ω(x) ω(ξ)

ω∗(x) ω∗(y)

∣∣∣∣ =
∣∣∣∣ α β
−β α

∣∣∣∣ · ∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣
= (α2 + β2)

∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ > 0.

Therefore, taking the elementsx < ξ < y of I, we arrive at the inequalities

0 <

∣∣∣∣ ω(x) ω(ξ)
ω∗(x) ω∗(ξ)

∣∣∣∣ = ω(x)ω∗(ξ)

0 <

∣∣∣∣ ω(ξ) ω(y)
ω∗(ξ) ω∗(y)

∣∣∣∣ = −ω(y)ω∗(ξ),

which yields the contradiction thatω∗(ξ) is simultaneously positive and negative.
For the last assertion, notice thatω1, ω2 and the constant zero functions are

special generalized lines and apply the previous part of the theorem. �
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The most important property ofL(ω1, ω2) guarantees the existence of a gen-
eralized line “parallel” to the constant zero function, which itself is a generalized
line, too (see below). Moreover, as it can also be shown,L(ω1, ω2) fulfills the
axioms of hyperbolic geometry.

LEMMA 2.2. If (ω1, ω2) is a Chebyshev system on an intervalI, then there
existsω ∈ L(ω1, ω2) such thatω is positive onI◦.

PROOF. If ω1 has no zero inI◦, thenω := ω1 or ω := −ω1 (according to the
sign ofω1) will do. Suppose thatω1(ξ) = 0 for someξ ∈ I◦. Due to Lemma 2.1,
without loss of generality we may assume that

ω1(x) < 0 (x < ξ, x ∈ I)
ω1(y) > 0 (y > ξ, y ∈ I).

Choose the elementsx < ξ < y of I. The Chebyshev property of(ω1, ω2) and the
negativity ofω1(x)ω2(y) implies the inequality

ω2(y)
ω1(y)

<
ω2(x)
ω1(x)

.

Hence

(2.1) α := sup
y>ξ

[
ω2(y)
ω1(y)

]
≤ inf

x<ξ

[
ω2(x)
ω1(x)

]
;

moreover, both sides are real numbers. We show that the generalized line defined
by ω := αω1 − ω2 is positive on the interior ofI.

First observe thatω takes positive value at the pointξ. Indeed, by the definition
of ω we haveω(ξ) := αω1(ξ) − ω2(ξ) = −ω2(ξ); on the other hand, fory > ξ,
the positivity ofω1(y) and the Chebyshev property of(ω1, ω2) yields−ω2(ξ) > 0.

If y > ξ, then the definition ofα implies

α ≥ ω2(y)
ω1(y)

;

multiplying both sides by the positiveω1(y) and rearranging the terms we get,
ω(y) := αω1(y)− ω2(y) ≥ 0.

If x < ξ, then inequality (2.1) gives that

α ≤ ω2(x)
ω1(x)

;

multiplying both sides by the negativeω1(x) and rearranging the obtained terms,
we arrive at the inequalityω(x) := αω1(x)− ω2(x) ≥ 0.

To complete the proof, it suffices to show thatω always differs from zero on
the interior of the domain. Assume indirectly thatω(η) := αω1(η) − ω2(η) = 0
for someη ∈ I◦. Clearly,η 6= ξ sinceω(ξ) > 0. Therefore,ω1(η) 6= 0 andα can
be expressed explicitly:

α =
ω2(η)
ω1(η)

.



28 CHAPTER 2. GENERALIZED 2-CONVEXITY

If ξ < η, choosey ∈ I such thatη < y hold. By the positivity ofω1(η)ω1(y) and
the Chebyshev property of(ω1, ω2),

α =
ω2(η)
ω1(η)

<
ω2(y)
ω1(y)

which contradicts the definition ofα. Similarly, if ξ > η, choosex ∈ I such that
x < η be valid. Then, the positivity ofω1(x)ω1(η) and the Chebyshev property of
(ω1, ω2) imply the inequality

α =
ω2(η)
ω1(η)

>
ω2(x)
ω1(x)

,

which contradicts (2.1). �

As an important consequence of Lemma 2.2, a Chebyshev system can always
be replaced equivalently by a “regular” one. In other words, assuming positivity
on the first component of a Chebyshev system, as it is required in many further
results, is not an essential restriction. Moreover, the next lemma also gives a char-
acterization of pairs of functions to form a Chebyshev system.

LEMMA 2.3. Let(ω1, ω2) be a Chebyshev system on an intervalI ⊂ R. Then,
there exists a Chebyshev system(ω∗1, ω

∗
2) on I that possesses the following prop-

erties:

(i) ω∗1 is positive onI◦;
(ii) ω∗2/ω∗1 is strictly monotone increasing onI◦;

(iii) (ω1, ω2)-convexity is equivalent to(ω∗1, ω
∗
2)-convexity.

Conversely, ifω1, ω2 : I → R are continuous functions such thatω1 is positive
and ω2/ω1 is strictly monotone increasing, then(ω1, ω2) is a Chebyshev system
overI.

PROOF. Lemma 2.2 guarantees the existence of real constantsα andβ such
thatαω1 + βω2 > 0 holds for allx ∈ I◦. Define the functionsω∗1, ω

∗
2 : I → R by

the formulae
ω∗1 := αω1 + βω2 ω∗2 := −βω1 + αω2.

Choosing the elementsx < y of I and applying the product rule of determinants,
we get ∣∣∣∣ ω∗1(x) ω∗1(y)

ω∗2(x) ω∗2(y)

∣∣∣∣ =
∣∣∣∣ α β
−β α

∣∣∣∣ · ∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣
= (α2 + β2)

∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ > 0.

Therefore,(ω∗1, ω
∗
2) is also a Chebyshev system overI. Assuming thatω∗1 is pos-

itive, as it can easily be checked, the Chebyshev property of(ω∗1, ω
∗
2) yields that

the functionω∗2/ω∗1 is strictly monotone increasing on the interior ofI.
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At last, letf : I → R be an arbitrary function andx < y < z be arbitrary
elements ofI. Then, by the product rule of determinants again,∣∣∣∣∣∣

f(x) f(y) f(z)
ω∗1(x) ω∗1(y) ω∗1(z)
ω∗2(x) ω∗2(y) ω∗2(z)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 0
0 α β
0 −β α

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

f(x) f(y) f(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣
= (α2 + β2) ·

∣∣∣∣∣∣
f(x) f(y) f(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ ,
which shows that the functionf is generalized convex with respect to the Cheby-
shev system(ω1, ω2) if and only if it is generalized convex with respect to the
Chebyshev system(ω∗1, ω

∗
2).

The proof of the converse assertion is a simple calculation, therefore it is omit-
ted. �

The following result gives various characterizations of(ω1, ω2)-convexity via
the monotonicity of the generalized divided difference, the generalized support
property and the “local” and the “global” generalized chord properties.

THEOREM 2.4. Let (ω1, ω2) be a Chebyshev system over an intervalI such
thatω1 is positive onI◦. The following statements are equivalent:

(i) f : I → R is (ω1, ω2)-convex;
(ii) for all elementsx < y < z of I we have that∣∣∣∣ f(y) f(z)

ω1(y) ω1(z)

∣∣∣∣∣∣∣∣ ω1(y) ω1(z)
ω2(y) ω2(z)

∣∣∣∣ ≤
∣∣∣∣ f(x) f(y)

ω1(x) ω1(y)

∣∣∣∣∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ ;
(iii) for all x0 ∈ I◦ there existα, β ∈ R such that

αω1(x0) + βω2(x0) = f(x0),
αω1(x) + βω2(x) ≤ f(x) (x ∈ I);

(iv) for all n ∈ N, x0, x1, . . . , xn ∈ I andλ1, . . . , λn ≥ 0 satisfying the condi-
tions

n∑
k=1

λkω1(xk) = ω1(x0)

n∑
k=1

λkω2(xk) = ω2(x0)

we have that

f(x0) ≤
n∑

k=1

λkf(xk);
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(v) for all x0, x1, x2 ∈ I andλ1, λ2 ≥ 0 satisfying the conditions

λ1ω1(x1) + λ2ω1(x2) = ω1(x0)
λ1ω2(x1) + λ2ω2(x2) = ω2(x0)

we have that

f(x0) ≤ λ1f(x1) + λ2f(x2);

(vi) for all elementsx < p < y of I

f(p) ≤ αω1(p) + βω2(p)

where the constantsα, β are the solutions of the system of linear equations

f(x) = αω1(x) + βω2(x)
f(y) = αω1(y) + βω2(y).

PROOF. (i) ⇒ (ii). Assume indirectly that(ii) is not true. Then, considering
the positivity of the denominators, there exist elementsx < y < z of I such that
the inequality∣∣∣∣ f(y) f(z)

ω1(y) ω1(z)

∣∣∣∣ · ∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ > ∣∣∣∣ f(x) f(y)
ω1(x) ω1(y)

∣∣∣∣ · ∣∣∣∣ ω1(y) ω1(z)
ω2(y) ω2(z)

∣∣∣∣
holds or equivalently,

f(y)
(

ω1(x)
∣∣∣∣ ω1(y) ω1(z)

ω2(y) ω2(z)

∣∣∣∣+ ω1(z)
∣∣∣∣ ω1(x) ω1(y)

ω2(x) ω2(y)

∣∣∣∣)

> ω1(y)
(

f(x)
∣∣∣∣ ω1(y) ω1(z)

ω2(y) ω2(z)

∣∣∣∣+ f(z)
∣∣∣∣ ω1(x) ω1(y)

ω2(x) ω2(y)

∣∣∣∣) .

Subtracting

f(y)ω1(y)
∣∣∣∣ ω1(x) ω1(z)

ω2(x) ω2(z)

∣∣∣∣
from both sides and applying the expansion theorem “backwards”, we get

f(y)

∣∣∣∣∣∣
ω1(x) ω1(y) ω1(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ > ω1(y)

∣∣∣∣∣∣
f(x) f(y) f(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ .
The (ω1, ω2)-convexity off implies that the right hand side of the inequality is
nonnegative, while the left hand side equals zero, which is a contradiction.

(ii) ⇒ (iii). Fix x0 ∈ I◦. Then, for all elementsξ < x0 < x of I,

−

∣∣∣∣ f(ξ) f(x0)
ω1(ξ) ω1(x0)

∣∣∣∣∣∣∣∣ ω1(ξ) ω1(x0)
ω2(ξ) ω2(x0)

∣∣∣∣ ≤ −

∣∣∣∣ f(x0) f(x)
ω1(x0) ω1(x)

∣∣∣∣∣∣∣∣ ω1(x0) ω1(x)
ω2(x0) ω2(x)

∣∣∣∣
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holds, therefore

β := inf
x>x0

−
∣∣∣∣ f(x0) f(x)

ω1(x0) ω1(x)

∣∣∣∣∣∣∣∣ ω1(x0) ω1(x)
ω2(x0) ω2(x)

∣∣∣∣


is a real number. The positivity assumption onω1 guarantees that the coefficient
α can be chosen such thatαω1(x0) + βω2(x0) = f(x0) be satisfied. Rewrite the
desired inequalityαω1(x) + βω2(x) ≤ f(x) into the equivalent form

(2.2) β

∣∣∣∣ ω1(x0) ω1(x)
ω2(x0) ω2(x)

∣∣∣∣+ ∣∣∣∣ f(x0) f(x)
ω1(x0) ω1(x)

∣∣∣∣ ≤ 0.

The definition ofβ guarantees that it is valid ifx0 < x. Assume thatx < x0

and chooseξ ∈ I such thatx < x0 < ξ hold. Then, applying(ii), we have the
inequality ∣∣∣∣ f(x0) f(ξ)

ω1(x0) ω1(ξ)

∣∣∣∣∣∣∣∣ ω1(x0) ω1(ξ)
ω2(x0) ω2(ξ)

∣∣∣∣ ≤
∣∣∣∣ f(x) f(x0)

ω1(x) ω1(x0)

∣∣∣∣∣∣∣∣ ω1(x) ω1(x0)
ω2(x) ω2(x0)

∣∣∣∣ .
Observe that the denominator of the right hand side is positive, therefore, after
rearranging this inequality, we get

−

∣∣∣∣ f(x0) f(ξ)
ω1(x0) ω1(ξ)

∣∣∣∣∣∣∣∣ ω1(x0) ω1(ξ)
ω2(x0) ω2(ξ)

∣∣∣∣
∣∣∣∣ ω1(x0) ω1(x)

ω2(x0) ω2(x)

∣∣∣∣+ ∣∣∣∣ f(x0) f(x)
ω1(x0) ω1(x)

∣∣∣∣ ≤ 0,

which, and the choice ofβ immediately implies (2.2).
(iii) ⇒ (iv). First assume thatx0 = x1 = · · · = xn. We recall thatω1(x0)

andω2(x0) cannot be equal to zero simultaneously due to Lemma 2.1; therefore
one of the conditions gives the identity

∑n
k=1 λk = 1, and the inequality to be

proved trivially holds. Ifx0, x1, . . . , xn are distinct points ofI, then it necessarily
follows x0 ∈ I◦. Indeed, ifinf(I) ∈ I and indirectlyx0 = inf(I), then we have
the inequalities

ω1(x0)ω2(xk)− ω1(xk)ω2(x0) ≥ 0
for all k = 1, . . . , n since(ω1, ω2) is a Chebyshev system onI; furthermore, at
least one of them is strict. Multiplying thekth inequality by the positiveλk and
summing from1 to n, we obtain

ω1(x0)
n∑

k=1

λkω2(xk) > ω2(x0)
n∑

k=1

λkω1(xk).

But, due to the conditions, both sides have the common valueω1(x0)ω2(x0), which
is a contradiction. An analogous argument gives that the casex0 = sup(I) is also
impossible, therefore it follows thatx0 ∈ I◦.
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Chooseα, β ∈ R so that the relations

αω1(x0) + βω2(x0) = f(x0)
αω1(x) + βω2(x) ≤ f(x) (x ∈ I)

be valid. Then, substitutingx = xk into the last inequality and applying the
conditions, we get that

n∑
k=1

λkf(xk) ≥
n∑

k=1

λkαω1(xk) +
n∑

k=1

λkβω2(xk)

= αω1(x0) + βω2(x0) = f(x0),

which gives the desired implication.
(iv) ⇒ (v). Taking the particular casen = 2 in (iv), we arrive at(v).
(v) ⇒ (vi). According to Cramer’s rule, for all elementsx < p < y of I the

system of linear equations

λ1ω1(x) + λ2ω1(y) = ω1(p)
λ1ω2(x) + λ2ω2(y) = ω2(p)

has unique nonnegative solutionsλ1 andλ2. Therefore, using the definition ofα
andβ,

f(p) ≤ λ1f(x) + λ2f(y)
= λ1

(
αω1(x) + βω2(x)

)
+ λ2

(
αω1(y) + βω2(y)

)
= α

(
λ1ω1(x) + λ2ω1(y)

)
+ β

(
λ1ω2(x) + λ2ω2(y)

)
= αω1(p) + αω2(p).

(vi) ⇒ (i). Expressing the unknownsα andβ with ωj(x), ωj(y) andωj(p),
the inequalityf(p) ≤ αω1(p) + βω2(p) can be rewritten into the form∣∣∣∣ ω1(x) ω1(y)

ω2(x) ω2(y)

∣∣∣∣ f(p) ≤
∣∣∣∣ f(x) f(y)

ω2(x) ω2(y)

∣∣∣∣ω1(p) +
∣∣∣∣ f(x) f(y)

ω1(x) ω1(y)

∣∣∣∣ω2(p)

or equivalently

0 ≤

∣∣∣∣∣∣
f(x) f(p) f(y)
ω1(x) ω1(p) ω1(y)
ω2(x) ω2(p) ω2(y)

∣∣∣∣∣∣ ,
which completes the proof. �

In the particular setting whereω1(x) := 1 andω2(x) := x, this theorem re-
duces to the well known characterization properties of standard convex functions.
Now the last two assertions coincide: both of them state that the function’s graph
is under the chord joining between the endpoints of the graph. Let us note that in
most of the literature the notion of (standard) convexity is defined exactly by this
property (see the last assertion of the obtained corollary).
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COROLLARY 2.5. Let I ⊂ R be an interval. The following statements are
equivalent:

(i) f : I → R is convex (in the standard sense);
(ii) for all elementsx < y < z of I we have that

f(y)− f(x)
y − x

≤ f(z)− f(y)
z − y

;

(iii) for all x0 ∈ I◦ there existα, β ∈ R such that

α + βx0 = f(x0), α + βx ≤ f(x) (x ∈ I);

(iv) for all n ∈ N, x0, x1, . . . , xn ∈ I andλ1, . . . , λn ≥ 0 satisfying the condi-
tions

n∑
k=1

λk = 1,

n∑
k=1

λkxk = x0

we have that

f(x0) ≤
n∑

k=1

λkf(xk);

(v) for all x0, x1, x2 ∈ I andλ1, λ2 ≥ 0 satisfying the conditions

λ1 + λ2 = 1, λ1x1 + λ2x2 = x0

we have that
f(x0) ≤ λ1f(x1) + λ2f(x2).

If the base functionsω1 andω2 are twice differentiable with a positive Wronski
determinant, then a twice differentiable functionf : I → R is (ω1, ω2)-convex
if and only if the Wronski determinant of the system(f, ω1, ω2) is nonnegative
(Bonsall, [Bon50]). This result can also be deduced from Theorem 2.4.

As it is well known, (standard) convex functions are exactly those ones that
can be obtained as the pointwise supremum of families of affine functions. As a
direct consequence (and also another application) of Theorem 2.4, an analogous
statement holds for(ω1, ω2)-convex functions.

COROLLARY 2.6. Let (ω1, ω2) be a Chebyshev system over an open interval
I. Then, a functionf : I → R is generalized convex with respect to(ω1, ω2) if
and only if

f(x) = sup{ω(x) |ω ∈ L(ω1, ω2), ω ≤ f }.

PROOF. Assertion(iii) of Theorem 2.4 immediately implies the representa-
tion above. For the sufficiency, part assertion(v) of Theorem 2.4 is applied. Fix
the elementx0 of the open intervalI. Take a generalized lineω = αω1+βω2 such
thatω ≤ f , furthermore, the elementsx1, x2 of I and the nonnegative coefficients
λ1, λ2 that fulfill the conditions

λ1ω1(x1) + λ2ω1(x2) = ω1(x0)
λ1ω2(x1) + λ2ω2(x2) = ω2(x0).
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Then,

λ1f(x1) + λ2f(x2) ≥ λ1ω(x1) + λ2ω(x2)
= λ1

(
αω1(x1) + βω2(x1)

)
+ λ2

(
αω1(x2) + βω2(x2)

)
= α

(
λ1ω1(x1) + λ2ω1(x2)

)
+ β

(
λ1ω2(x1) + λ2ω2(x2)

)
= αω1(x0) + βω2(x0) = ω(x0).

That is, λ1f(x1) + λ2f(x2) ≥ ω(x0) for all ω ≤ f , hence, according to the
representation, it follows thatλ1f(x1)+λ2f(x2) ≥ f(x0). Thereforef is convex
with respect to(ω1, ω2), indeed. �

2.2. Connection with standard convexity

The convexity notion induced by two dimensional Chebyshev systems turns
out to be always reducible to standard convexity with the help of a composite
function. This connection enables us to generalize many classical results for the
case of(ω1, ω2)-convexity directly.

THEOREM 2.7. Let (ω1, ω2) be a Chebyshev system on an open intervalI
such thatω1 is positive. The functionf : I → R is (ω1, ω2)-convex if and only if
the functiong : ω2/ω1(I) → R defined by the formula

g :=
f

ω1
◦
(

ω2

ω1

)−1

is convex in the standard sense.

PROOF. In this case the functionω2/ω1 is continuous and strictly monotone
increasing, according to Lemma 2.3. Therefore, the image of the intervalI by the
functionω2/ω1 is a nonempty open interval. Consider the identity∣∣∣∣∣∣

f(x) f(y) f(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ =
= ω1(x)ω1(y)ω1(z)

∣∣∣∣∣∣
(f/ω1)(x) (f/ω1)(y) (f/ω1)(z)

1 1 1
(ω2/ω1)(x) (ω2/ω1)(y) (ω2/ω1)(z)

∣∣∣∣∣∣
= ω1(x)ω1(y)ω1(z)

∣∣∣∣∣∣
g(u) g(v) g(w)

1 1 1
u v w

∣∣∣∣∣∣
where

u = (ω2/ω1)(x) v = (ω2/ω1)(y) w = (ω2/ω1)(z).

The positivity ofω1 forces that both sides are simultaneously positive, negative
or zero. That is, the functionf is (ω1, ω2)-convex if and only if the functiong is
convex in the standard sense. �
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Theorem 2.7 yields strong regularity properties for generalized convexity. For
example,(ω1, ω2)-convex functions defined on compact intervals are integrable
which is essential in formulating the main result of the chapter.

THEOREM 2.8. Let (ω1, ω2) be a Chebyshev system on an intervalI. If a
functionf : I → R is (ω1, ω2)-convex, then it is continuous onI◦. Moreover,f is
bounded on each compact subinterval ofI.

PROOF. Without loss of generality we may assume thatω1 is positive onI◦.
If the functionf is (ω1, ω2)-convex onI, then the composite functiong in the
previous theorem is convex in the standard sense onJ := ω2/ω1(I). Therefore,
by the well known regularity properties of convex functions,g is continuous on
J◦. On the other hand, we have that

f = ω1 · g ◦
(

ω2

ω1

)
,

and the right hand side is continuous onI◦ whence the continuity of the function
f follows.

To prove thatf is bounded on the compact subinterval[a, b] of I, we shall
apply Theorem 2.4. Take a generalized line which supportsf at an arbitrary point
x0 ∈ I◦. Then, inequality(iii) implies thatf is bounded from below on thewhole
interval I. On the other hand, puttingx := a andy := b into (vi), we get that
f is also bounded by a certain generalized line from above on[a, b]. Hencef is
bounded, indeed. �

DEFINITION. Let (ω1, ω2) be a Chebyshev system on an intervalI further-
moreω ∈ L(ω1, ω2) be a generalized line which is positive onI◦. A function
f : I → R is called generalizedω-convex with respect to(ω1, ω2) if, for all
elementsx < y < z of I, the following inequality holds:∣∣∣∣∣∣

f(x) + ω(x) f(y)− ω(y) f(z) + ω(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ ≥ 0.

Substitutingω1(x) := 1, ω2(x) := x and ω := ε/2, the definition gives
the notion ofε-convexity. By well known results,ε-convexity is stable: everyε-
convex function is “close” to a (standard) convex function. As another application
of Theorem 2.7, we prove an analogous result for(ω1, ω2)-convex functions.

COROLLARY 2.9. Let (ω1, ω2) be a Chebyshev system on an intervalI fur-
thermoreω ∈ L(ω1, ω2) be a generalized line which is positive onI◦. A function
f : I → R is generalizedω-convex with respect to(ω1, ω2) if and only if there exist
functionsf, g : I → R such thatg is (ω1, ω2)-convex,‖h‖ ≤ ‖ω‖, andf = g +h.

PROOF. Assume thatω has the representationω = αω1 + βω2 and define the
generalized linesω∗1 andω∗2 by ω∗1 := αω1 +βω2 andω∗2 := −βω1 +αω2, respec-
tively. Then, according to Lemma 2.3, the functionω∗2/ω∗1 is strictly monotone
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increasing and the generalizedω-convexity off is equivalent to the inequality∣∣∣∣∣∣
f(x) + ω∗1(x) f(y)− ω∗1(y) f(z) + ω∗1(z)

ω∗1(x) ω∗1(y) ω∗1(z)
ω∗2(x) ω∗2(y) ω∗2(z)

∣∣∣∣∣∣ ≥ 0.

Dividing both sides by the positiveω∗1(x)ω∗1(y)ω∗1(z) then substituting the argu-
mentsu = (ω∗2/ω∗1)(x), v = (ω∗2/ω∗1)(y) andw = (ω∗2/ω∗1)(z), we get the in-
equality ∣∣∣∣∣∣

F (u) + 1 F (v)− 1 F (w) + 1
1 1 1
u v w

∣∣∣∣∣∣ ≥ 0

where

F :=
f

ω∗1
◦
(

ω∗2
ω∗1

)−1

.

That is,F satisfies the inequality ofε-convexity withε = 1. Therefore, there exist
functionsG, H : I → R such thatG is convex (in the standard sense),‖H‖ ≤ 1
andF = G + H or equivalently,

f = ω∗1 ·G ◦
(

ω∗2
ω∗1

)
+ ω∗1 ·H ◦

(
ω∗2
ω∗1

)
=: g + h.

Then, Theorem 2.7 and Lemma 2.3 guarantee the(ω1, ω2)-convexity ofg, while
simple calculations imply‖h‖ ≤ ‖ω‖. �

2.3. Hermite–Hadamard-type inequalities

The main result provides Hermite–Hadamard-type inequalities for generalized
2-convex functions.

THEOREM2.10. Let(ω1, ω2) be a Chebyshev system on an interval[a, b] such
thatω1 is positive on]a, b[, furthermore, letρ : [a, b] → R be a positive integrable
function. Define the pointξ and the coefficientsc, c1, c2 by the formulae

ξ =
(

ω2

ω1

)−1
(∫ b

a ω2ρ∫ b
a ω1ρ

)
, c =

∫ b
a ω1ρ

ω1(ξ)

and

c1 =

∣∣∣∣∣
∫ b
a ω1ρ ω1(b)∫ b
a ω2ρ ω2(b)

∣∣∣∣∣∣∣∣∣ ω1(a) ω1(b)
ω2(a) ω2(b)

∣∣∣∣ , c2 =

∣∣∣∣∣ ω1(a)
∫ b
a ω1ρ

ω2(a)
∫ b
a ω2ρ

∣∣∣∣∣∣∣∣∣ ω1(a) ω1(b)
ω2(a) ω2(b)

∣∣∣∣ .

If f : [a, b] → R is an (ω1, ω2)-convex function, then the following Hermite–
Hadamard-type inequality holds

cf(ξ) ≤
∫ b

a
fρ ≤ c1f(a) + c2f(b).



2.3. HERMITE–HADAMARD-TYPE INEQUALITIES 37

PROOF. By the definitions of the pointξ and the constantc, we have the for-
mulae ∫ b

a ω2ρ∫ b
a ω1ρ

=
ω2(ξ)
ω1(ξ)

and ∫ b

a
ω1ρ = cω1(ξ),

which yields the identity ∫ b

a
ω2ρ = cω2(ξ).

That is, the left hand side of the Hermite–Hadamard-type inequality to be proved
is exact forf = ω1 andf = ω2, respectively. Letf : [a, b] → R be an arbitrary
(ω1, ω2)-convex function and chooseα, β ∈ R such that the relations

αω1(ξ) + βω2(ξ) = f(ξ)
αω1(x) + βω2(x) ≤ f(x)

be satisfied for allx ∈ [a, b]. By Theorem 2.4 such real numbers exist sinceξ is an
interior point of the domain. Multiplying the last inequality by the positive weight
functionρ, we arrive at∫ b

a
fρ ≥ α

∫ b

a
ω1ρ + β

∫ b

a
ω2ρ = α

(
cω1(ξ)

)
+ β

(
cω2(ξ)

)
= cf(ξ)

which results in the left hand side inequality.
To verify the right hand side one, observe first that the coefficientsc1 andc2

are the solutions of the following system of linear equations∫ b

a
ω1ρ = c1ω1(a) + c2ω1(b)∫ b

a
ω2ρ = c1ω1(a) + c2ω2(b).

In other words, the right hand side of the Hermite–Hadamard-inequality is exact,
again, forf = ω1 andf = ω2. Let f : [a, b] → R be an arbitrary(ω1, ω2)-convex
function. By Theorem 2.4, if the real numbersα andβ are the solutions of the
system of linear equations

f(a) = αω1(a) + βω2(a)
f(b) = αω1(b) + βω2(b),

then

f(x) ≤ αω1(x) + βω2(x)
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for all x ∈ [a, b]. Multiplying this inequality by the positive weight functionρ, we
get that∫ b

a
fρ ≤ α

∫ b

a
ω1ρ + β

∫ b

a
ω2ρ

= α
(
c1ω1(a) + c2ω1(b)

)
+ β

(
c1ω2(a) + c2ω2(b)

)
= c1

(
αω1(a) + βω2(a)

)
+ c2

(
αω1(b) + βω2(b)

)
= c1f(a) + c2f(b),

thus the proof is complete. �

2.4. Applications

Simple calculations show that specializingω1(x) := 1, ω2(x) := x andρ ≡ 1,
Theorem 2.10 reduces to the classical Hermite–Hadamard inequality :

COROLLARY 2.11. If f : [a, b] → R is a (standard) convex function, then

f

(
a + b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
.

The subsequent corollaries present further Hermite–Hadamard-type inequali-
ties for generalized convex functions where the underlying Chebyshev systems of
the induced convexity are the hyperbolic, trigonometric, exponential and power
systems (to see that the pairs(ω1, ω2) form a Chebyshev system in each case,
consult the converse part of Lemma 2.3).

COROLLARY 2.12. If f : [a, b] → R is a (cosh, sinh)-convex function, then

2 sinh
(

b− a

2

)
f

(
a + b

2

)
≤
∫ b

a
f(x)dx ≤ tanh

(
b− a

2

)
(f(a) + f(b)) .

PROOF. If ω1 := cosh andω2 := sinh, thenω1 is positive andω2/ω1 =
tanh is strictly monotone increasing; hence, according to Lemma 2.3,(ω1, ω2) is
a Chebyshev system and(ω2/ω1)−1 = artanh. Applying the addition properties
of hyperbolic functions for the identitiesb = (b + a)/2 + (b − a)/2 anda =
(b + a)/2− (b− a)/2, the integrals ofω1 andω2 can be written into product form
via the formulae∫ b

a
coshxdx = sinh(b)− sinh(a) = 2 cosh

(
b + a

2

)
sinh

(
b− a

2

)
∫ b

a
sinhxdx = cosh(b)− cosh(a) = 2 sinh

(
b + a

2

)
sinh

(
b− a

2

)
.

Therefore,

ξ = artanh

(∫ b
a sinhxdx∫ b
a coshxdx

)
=

b + a

2
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furthermore

c =

∫ b
a coshxdx

cosh ξ
= 2 sinh

b + a

2
.

To determine the coefficients of the right hand side, first we calculate the numerator
of c1:∣∣∣∣ 2 cosh

(
b+a
2

)
sinh

(
b−a
2

)
cosh b

2 sinh
(

b+a
2

)
sinh

(
b−a
2

)
sinh b

∣∣∣∣ =
= 2 sinh

(
b− a

2

)(
cosh

(
b + a

2

)
sinh b− sinh

(
b + a

2

)
cosh b

)
= 2 sinh

(
b− a

2

)
sinh

(
b− b + a

2

)
= 2 sinh2

(
b− a

2

)
.

Similarly, the numerator of the coefficientc2 can be obtained as follows:∣∣∣∣ cosh a 2 cosh
(

b+a
2

)
sinh

(
b−a
2

)
sinh a 2 sinh

(
b+a
2

)
sinh

(
b−a
2

) ∣∣∣∣ =
= 2 sinh

(
b− a

2

)(
sinh

(
b + a

2

)
cosh a− cosh

(
b + a

2

)
sinh a

)
= 2 sinh

(
b− a

2

)
sinh

(
b + a

2
− a

)
= 2 sinh2

(
b− a

2

)
.

On the other hand, the denominators in both cases coincide and have the common
value∣∣∣∣ cosh a cosh b

sinh a sinh b

∣∣∣∣ = sinh(b− a) = 2 sinh
(

b− a

2

)
cosh

(
b− a

2

)
,

therefore

c1 = c2 = tanh
(

b− a

2

)
.

�

Replacing the Chebyshev system(cosh, sinh) with (cos, sin), the obtained
Hermite–Hadamard-type inequality is analogous to the previous one due to the
similar additional properties of trigonometric and hyperbolic functions.

COROLLARY 2.13. If f : [a, b] ⊂]− π
2 , π

2 [→ R is a(cos, sin)-convex function,
then

2 sin
(

b− a

2

)
f

(
a + b

2

)
≤
∫ b

a
f(x)dx ≤ tan

(
b− a

2

)
(f(a) + f(b)) .

Observe that both of the previous two Hermite–Hadamard-type inequalities
involve the midpoint of the domain; moreover, dividing byb − a and taking the
limit a → b, the coefficient of the left hand sides tends to1, while the coefficient
of the right hand sides tends to1/2. Therefore these inequalities can be considered
as the “local” version of the Hermite–Hadamard inequality.
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We say that a functionf : I → R is log-convexif the composite function
f ◦ log : exp(I) → R is convex (in the standard sense). In terms of general-
ized convexity, log-convex functions are exactly the(1, exp)-convex ones (consult
Theorem 2.7). The next corollary gives Hermite–Hadamard-type inequality for
log-convex functions ([Dra01c], [Fin00]).

COROLLARY 2.14. If f : [a, b] → R is a (1, exp)-convex function, then

(b− a)f
(

log
exp(b)− exp(a)

b− a

)
≤
∫ b

a
f(x)dx

≤
(

(b− a) exp(b)
exp(b)− exp(a)

− 1
)

f(a) +
(

1− (b− a) exp(a)
exp(b)− exp(a)

)
f(b).

The last corollary concerning the case of “power convexity” also reduces to
the classical Hermite–Hadamard inequality substitutingp = 0 andq = 1:

COROLLARY 2.15. If p < q, p, q 6= −1 and f : [a, b] ⊂]0,∞[→ R is an
(xp, xq)-convex function, then(

bp+1 − ap+1

p + 1

)q(
q + 1

bq+1 − aq+1

)p

f

(
q−p

√
(p + 1)(bq+1 − aq+1)
(q + 1)(bp+1 − ap+1)

)

≤
∫ b

a
f(x)dx

≤
(bp+1−ap+1)bq

p+1 − (bq+1−aq+1)bp

q+1

apbq − aqbp
f(a) +

(bq+1−aq+1)ap

q+1 − (bp+1−ap+1)aq

q+1

apbq − aqbp
f(b).

The proofs of the last three corollaries need similar calculations as the first
one, therefore they are omitted.



CHAPTER 3

Generalized convexity induced by Chebyshev systems

In this chapter we formulate Hermite–Hadamard-type inequalities for gener-
alized convex functions where the underlying Chebyshev system of the induced
convexity isarbitrary. The proofs of the main results are based on the Krein–
Markov theory of moment spaces induced by Chebyshev systems. According to
this theory, the vector integral of a Chebyshev system can uniquely be represented
as the linear combination of the values of the system in certain base points of the
domain. The number of the points and also the points themselves, depend only
on the Chebyshev system and its dimension: it turns out that the cases of odd and
even order convexity must be investigated separately. In fact, this is exactly the
deeper reason for the analogous phenomenon in the case of polynomial convexity,
too. Once the base points of the representations are determined, its coefficients are
obtained as the solutions of a system of linear equations. With the help of the rep-
resentations and the notion of generalized convexity, the Hermite–Hadamard-type
inequalities can be verified using integration and pure linear algebraic methods.

In the previous chapters when the basis or the dimension of the studied Cheby-
shev systems are quite special, the base points of the Hermite–Hadamard-type
inequalities can explicitly be given. Unfortunately, under the present general cir-
cumstances, we can guarantee only theexistence(and the uniqueness) of the base
points, butcannot give any explicit formulae for them.

At last, motivated by Rolle’s mean-value theorem, an alternative and elemen-
tary approach is presented for the cases when the Hermite–Hadamard-type in-
equalities involve at most one interior base point of the domain. Some examples
are also presented of these particular cases.

3.1. Characterizations and regularity properties

Let ωωωωωωωωω = (ω1, . . . , ωn) be a Chebyshev system over an intervalI and denote
the set of all linear combinations of its members byL(ω1, . . . , ωn). A function
is calledgeneralized polynomial(belonging to the system in question) if it is the
element of the linear spanL(ω1, . . . , ωn). In terms of generalized polynomials,
generalized convexity can be characterized in a geometrical manner. Namely, a
function is generalized convex if and only if it intersects its generalized polynomial
that interpolates the function in any prescribed points alternately. (The number of
the points depends on the dimension of the underlying Chebyshev system.) More
precisely, we have the following

41
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THEOREM3.1. Let ωωωωωωωωω = (ω1, . . . , ωn) be a Chebyshev system over an interval
I. Then, for a functionf : I → R, the following statements are equivalent:

(i) f is generalized convex with respect toωωωωωωωωω;
(ii) for all y1 < · · · < yn in I, the generalized polynomialω of ω1, . . . , ωn

determined uniquely by the interpolation conditions

f(yk) = ω(yk) (k = 1, . . . , n)

satisfies the inequalities

(−1)n+k(f(y)− ω(y)) ≥ 0 (yk < y < yk+1, k = 0, . . . , n)

under the conventionsy0 := inf I andyn+1 := sup I;
(iii) keeping the previous notations and settings, for fixedk ∈ {0, . . . , n}, the

following inequality holds

(−1)n+k(f(y)− ω(y)) ≥ 0 (yk ≤ y ≤ yk+1).

PROOF. First of all, in order to simplify the proof, two useful formulas are
derived. Denote then − 1 tuple obtained by dropping thekth component ofωωωωωωωωω
by ωωωωωωωωωk, and define the determinantsD0, D1, . . . , Dn furthermore the generalized
polynomialω of ω1, . . . , ωn by

D0 :=
∣∣ ωωωωωωωωω(y1) · · · ωωωωωωωωω(yn)

∣∣
Dk :=

∣∣∣∣ f(y1) · · · f(yn)
ωωωωωωωωωk(y1) · · · ωωωωωωωωωk(yn)

∣∣∣∣
ω :=

n∑
k=1

(−1)k+1Dk

D0
ωk.

Due to the Chebyshev property ofωωωωωωωωω, the determinantD0 is positive hence the
definition ofω is correct. Fixy ∈ I. Applying the expansion theorem to the first
column of the following determinant, we get the identity

(3.1)

∣∣∣∣ f(y) f(y1) · · · f(yn)
ωωωωωωωωω(y) ωωωωωωωωω(y1) · · · ωωωωωωωωω(yn)

∣∣∣∣ = D0(f(y)− ω(y)).

Moreover, if yk ≤ y ≤ yk+1 and (x0, x1, . . . , xn) denotes the increasing re-
arrangement of(y; y1, . . . , yn), the previous identity can be written into the form

(3.2)

∣∣∣∣ f(x0) f(x1) · · · f(xn)
ωωωωωωωωω(x0) ωωωωωωωωω(x1) · · · ωωωωωωωωω(xn)

∣∣∣∣ = (−1)kD0(f(y)− ω(y)).

For the implication(i) =⇒ (ii), observe that (3.1) guarantees the required
interpolation property ofω in the pointsy1, . . . , yn. Clearly,ω is uniquely deter-
mined. Suppose thatf : I → R is generalizedn-convex with respect toωωωωωωωωω. Then,
the positivity ofD0 and formula (3.2) yield the inequalities to be proved. The
implication (ii) =⇒ (iii) is trivial. The proof of(iii) =⇒ (i) is completely the
same as the proof of the first assertion. �
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In the standard setting and fixingk = 1, assertion(iii) gives the classical def-
inition of standard convexity: a function is convex (in the standard sense) if and
only if it is “under” the chord of the graph. Moreover, substitutingn = 2, we also
get a new characterization of generalized2-convexity that completes Theorem 2.4.
However, the most important application of Theorem 3.1 guarantees strong regu-
larity properties for generalized convex functions.

THEOREM3.2. Let ωωωωωωωωω = (ω1, . . . , ωn) be a Chebyshev system over an interval
I. If f : I → R is a generalizedn-convex function with respect to this system and
n ≥ 2, thenf is continuous on the interior ofI. Furthermore,f is bounded on
each compact subinterval ofI.

PROOF. Choosey0 ∈ I◦ and fixx0 < x1 < · · · < xn in I so thatx1 = y0

hold. Denote the generalized polynomials ofω1, . . . , ωn that interpolateω0 in the
pointsx0 . . . , xn−1 andx1, . . . , xn by ω(1) andω(2), respectively. We assume that
n is even (the argument in the odd case is analogous). Then, according to(ii) of
Theorem 3.1, we have the inequalities

ω(1)(y) ≥ ω0(y) ≥ ω(2)(y) y ∈ [x0, x1]

ω(1)(y) ≤ ω0(y) ≤ ω(2)(y) y ∈ [x1, x2].

On the other hand,ω(1)(y0) = ω0(y0) andω(2)(y0) = ω0(y0). Therefore, due to
the continuity of the generalized polynomialsω(1) andω(2), we get that both the
left and right hand side limits ofω0 exist at the pointy0 and

lim
y→yo−0

ω0(y) = ω0(y0)

lim
y→yo+0

ω0(y) = ω0(y0),

which yields the continuity ofω0 at the interior pointy0 of I.
To prove the second assertion, we may assume thatI = [a, b]. It is sufficient

to show thatω0 is locally bounded at the endpoints ofI. Fix x0 < x1 < · · · < xn

in I so thatx0 = a hold, and denote the generalized polynomials ofω1, . . . , ωn

that interpolateω0 in the pointsx0 . . . , xn−1 and x1, . . . , xn by ω(1) and ω(2),
respectively. We assume thatn is even (the odd case is very similar). Then, by the
previous theorem again, we have the inequalities

ω(1)(y) ≥ ω0(y) ≥ ω(2)(y) y ∈ [x0, x1].

On the other hand, the functionsω(1) andω(2) are continuous, therefore bounded
on [a, b]. Henceω0 is bounded in a right neighborhood of the endpointa. It can be
similarly proved thatω0 is locally bounded at the left endpointb. �

In particular, generalized convex functions are integrable on any compact sub-
set of the domain. Let us also mention that the special casen = 2 gives the
statement of Theorem 2.8 via another approach in the proof.
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3.2. Moment spaces induced by Chebyshev systems

The geometric study of moment spaces induced by Chebyshev systems was
systematically developed by M. G. Krein. Independently and simultaneously, S.
Karlin and L. S. Shapley elaborated the geometry of moment spaces induced by
the polynomial system. Some of the results of their researches play the key role in
the further investigations.

DEFINITION. Let ωωωωωωωωω := (ω1, . . . , ωn) be a Chebyshev system on[a, b] and
denote the set of all nondecreasing right continuous functions defined on[a, b] by
B([a, b]). The set

Mn :=
{

c ∈ Rn
∣∣∣ c =

∫ b

a
ωωωωωωωωωdσ, σ ∈ B([a, b])

}
is called themoment space ofωωωωωωωωω.

It can be shown thatMn is a closed convex cone. More precisely, it is the
smallest closed convex cone that contains the parameterized curveωωωωωωωωω(t) wheret
traverses the interval[a, b]. For details, see [KS66, pp. 38-41]. The following
notion makes the formulation of many theorems quite convenient.

DEFINITION. The index I(c) of a pointc ∈ Mn is the minimal number of
pointsξ1, . . . , ξn0 in a representation

c =
n0∑

k=1

αkωωωωωωωωω(ξk)

under the convention thatωωωωωωωωω(a) and ωωωωωωωωω(b) are counted with half multiplicity, while
ωωωωωωωωω(ξ) for ξ ∈]a, b[ receives a full count. The pointsξ1, . . . , ξn0 are called theroots
of the representation.

By the celebrated theorem of Carathéodory (see [Roc70]), each point belong-
ing to the conical hull of a given subset ofRn can be represented as a cone combi-
nation involving at mostn points of the subset. Due to the Chebyshev property of
ωωωωωωωωω, a surprisingly better upper bound can be established thann: it turns out that the
elements ofMn are cone combinations of approximatelyn/2 points of the range
of ωωωωωωωωω. More precisely, the boundary and the interior ofMn, denoted by BdMn and
Int Mn, can be characterized via the subsequent two theorems due to Krein and
Markov.

THEOREM C. ([KS66, Theorem 2.1. p. 42])A vectorc ∈ Mn is a boundary
point of Mn if and only if I(c) < n/2. Moreover, everyc ∈ BdMn admits a
unique representation

c =
n0∑

k=1

αkωωωωωωωωω(ξk) (ξk ∈ [a, b], αk > 0, k = 1, . . . , n0)

wheren0 ≤ n+1
2 .
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THEOREM D. ([KS66, Theorem 3.1. p. 44; Remark 3.1. pp. 45-46; Corollary
3.1. p. 47.]) For eachc ∈ Int Mn there exist precisely two representations of
indexI(c) = n/2. Distinguishing the even and odd cases, the representations in
question are the following.
Casen = 2m:

c =
m∑

k=1

αkωωωωωωωωω(ξk) ( ξk ∈]a, b[ ),

c = β0ωωωωωωωωω(a) +
m−1∑
k=1

βkωωωωωωωωω(ηk) + βmωωωωωωωωω(b) ( ηk ∈]a, b[ );

Casen = 2m + 1:

c = α0ωωωωωωωωω(a) +
m∑

k=1

αkωωωωωωωωω(ξk) ( ξk ∈]a, b[ ),

c =
m∑

k=1

βkωωωωωωωωω(ηk) + βm+1ωωωωωωωωω(b) ( ηk ∈]a, b[ ).

The roots of the representations in both cases strictly interlace.

Let I ⊂ R be a real interval andωωωωωωωωω := (ω1, . . . , ωn) be a Chebyshev sys-
tem overI. Then, for pairwise distinct elementst1, . . . , tn of I, the vectors
ωωωωωωωωω(t1), . . . , ωωωωωωωωω(tn) are linearly independent. This simple observation immediately
implies

THEOREM3.3. The coefficients and the roots of the representations above are
uniquely determined.

Now we present a sufficient condition for a pointc to belong to the interior of
the setMn. This condition guarantees that the inequalities of the main results have
exactly the required form.

THEOREM3.4. Let ωωωωωωωωω = (ω1, . . . , ωn) be a Chebyshev system on[a, b] and let
ρ : [a, b] → R be a positive integrable function. Then,

c :=
∫ b

a
ωωωωωωωωωρ ∈ Int Mn.

PROOF. Let us recall thatMn is a closed subset ofRn. On the other hand,
the positivity ofρ yields c ∈ Mn, therefore it suffices to prove thatc 6∈ BdMn.
Assume indirectly thatc ∈ BdMn. We shall distinguish two cases according to
the parity ofn.

Casen = 2m+1. The indirect assumption and Theorem C impliesI(c) ≤ m
sinceI(c) increases at most1/2. For simplicity, assume thatI(c) = m. Then there
are two further possibilities: the representation ofc involves eitherm pairwise
distinct interior base pointsξ1 < · · · < ξm or m− 1 pairwise distinct interior base
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pointsξ1 < · · · < ξm−1 plus both the endpointsa andb, respectively. In the first
case we have the representation

c =
m∑

k=1

αkωωωωωωωωω(ξk).

Due to the Chebyshev property ofωωωωωωωωω and the positivity ofρ, we arrive at

0 <
∣∣ ωωωωωωωωω(t1)ρ(t1) ωωωωωωωωω(ξ1) · · · ωωωωωωωωω(tm)ρ(tm) ωωωωωωωωω(ξm) ωωωωωωωωω(tm+1)ρ(tm+1)

∣∣
for tk ∈]ξk−1, ξk[ (k = 1, . . . ,m) whereξ0 := a andξm+1 := b. After inte-
gration with respect to(t1, . . . , tm+1) and using the above representation ofc, we
have

0 <
∣∣∣ ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·

∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣
=

∣∣∣ ∫ ξ1
ξ0

ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·
∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∑m+1
k=1

∫ ξk

ξk−1
ωωωωωωωωωρ

∣∣∣
=

∣∣∣ ∫ ξ1
ξ0

ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·
∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∫ b
a ωωωωωωωωωρ

∣∣∣
=

∣∣∣ ∫ ξ1
ξ0

ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·
∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∑m
k=1 αkωωωωωωωωω(ξk)

∣∣∣ = 0

since the last column is the linear combination of the even indexed columns. Thus
we get the desired contradiction.

Now consider the other case whenc has the representation

c = α0ωωωωωωωωω(a) +
m−1∑
k=1

αkωωωωωωωωω(ξk) + αmωωωωωωωωω(b).

Due to the Chebyshev property ofωωωωωωωωω and the positivity ofρ again, we arrive at

0 <
∣∣ ωωωωωωωωω(a) ωωωωωωωωω(t1)ρ(t1) ωωωωωωωωω(ξ1) · · · ωωωωωωωωω(ξm−1) ωωωωωωωωω(tm)ρ(tm) ωωωωωωωωω(b)

∣∣
for tk ∈]ξk−1, ξk[ (k = 1, . . . ,m) whereξ0 := a andξm := b. An analogous
argument to the previous one leads to contradiction.

Casen = 2m. Similarly to the odd case, now we may assume thatI(c) =
m − 1/2. Then there are two possibilities: the representation ofc involves either
the endpointa andm−1 pairwise distinct interior base pointsξ1 < · · · < ξm−1 or
the endpointb andm − 1 pairwise distinct interior base pointsξ1 < · · · < ξm−1.
Applying the same method as above, both cases lead to contradiction again.�

3.3. Hermite–Hadamard-type inequalities

The main results concern the cases of even and odd order generalized convex-
ity separately. First we establish Hermite–Hadamard-type inequalities for the odd
order one.
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THEOREM3.5. Let ωωωωωωωωω = (ω1, . . . , ω2m+1) be a Chebyshev system on[a, b] and
ρ : [a, b] → R be a positive integrable function. There exist uniquely determined
base pointsξ1, . . . , ξm andη1, . . . , ηm of ]a, b[ such that

α0ωωωωωωωωω(a) +
m∑

k=1

αkωωωωωωωωω(ξk) =
∫ b

a
ωωωωωωωωωρ =

m∑
k=1

βkωωωωωωωωω(ηk) + βm+1ωωωωωωωωω(b).

The coefficientsα0, . . . , αm and β1, . . . , βm+1 are positive and uniquely deter-
mined, too. Furthermore, for any generalizedωωωωωωωωω-convex functionf : [a, b] → R,
the following Hermite–Hadamard-type inequality holds

α0f(a) +
m∑

k=1

αkf(ξk) ≤
∫ b

a
fρ ≤

m∑
k=1

βkf(ηk) + βm+1f(b).

PROOF. Let us note thatfρ is integrable on[a, b] by Theorem 3.2. The proofs
of the left and right hand side inequalities need similar methods, therefore, we
shall verify only the left hand side one. Theorem 3.4 guarantees that

∫ b
a ωωωωωωωωωρ is an

interior point of the moment spaceMn hence (see Theorem D and Theorem 3.3)
it has the representation

(3.3)
∫ b

a
ωωωωωωωωωρ = α0ωωωωωωωωω(a) +

m∑
k=1

αkωωωωωωωωω(ξk)

where the coefficientsα0, . . . , αm and interior base pointsξ1, . . . , ξm are deter-
mined uniquely. Definingξ0 := a andξm+1 := b, consider the following system
of linear equations∫ ξm+1

ξm

ωωωωωωωωωρ = c0ωωωωωωωωω(ξ0) +
m∑

k=1

(
c∗k

∫ ξk

ξk−1

ωωωωωωωωωρ + ckωωωωωωωωω(ξk)
)

where the unknowns arec0, c
∗
1, c1, . . . , c

∗
m, cm. Due to the Chebyshev property of

ωωωωωωωωω and the positivity ofρ, its base determinant

D :=
∣∣∣ ωωωωωωωωω(ξ0)

∫ ξ1
ξ0

ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·
∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∣∣∣
is positive. Therefore, the system has a unique solution(c0, c

∗
1, c1, . . . , c

∗
m, cm).

On the other hand, representation (3.3) shows that(α0,−1, α1, . . . ,−1, αm) is
also a solution. Thus,α0, α1, . . . , αn can be obtained by Cramer’s Rule:

α0 =
1
D

∣∣∣ ∫ ξ1
ξ0

ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·
∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣
αk =

1
D

∣∣∣ ωωωωωωωωω(ξ0) · · ·
∫ ξk

ξk−1
ωωωωωωωωωρ

∫ ξk+1

ξk
ωωωωωωωωωρ · · ·

∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣ .
Suppose now thatω0 : [a, b] → R is generalized(2m + 1)-convex function

with respect toωωωωωωωωω. Then, for all elementstk of ]ξk, ξk+1[, the following inequality
holds:

0 ≥
∣∣∣∣ f(ξ0) f(t0) · · · f(ξm) f(tm)

ωωωωωωωωω(ξ0) ωωωωωωωωω(t0) · · · ωωωωωωωωω(ξm) ωωωωωωωωω(tm)

∣∣∣∣ .
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Multiplying both sides by the positiveρ(t1) · · · ρ(tm) and integrating on the prod-
uct [ξ0, ξ1]×· · ·× [ξm, ξm+1] with respect to(t0, . . . , tm), we arrive at the inequal-
ity

0 ≥

∣∣∣∣∣ f(ξ0)
∫ ξ1
ξ0

fρ · · · f(ξm)
∫ ξm+1

ξm
fρ

ωωωωωωωωω(ξ0)
∫ ξ1
ξ0

ωωωωωωωωωρ · · · ωωωωωωωωω(ξm)
∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣∣∣
=

∣∣∣∣∣ f(ξ0)
∫ ξ1
ξ0

fρ · · · f(ξm)
∫ ξ1
ξ0

fρ + · · ·+
∫ ξm+1

ξm
fρ

ωωωωωωωωω(ξ0)
∫ ξ1
ξ0

ωωωωωωωωωρ · · · ωωωωωωωωω(ξm)
∫ ξ1
ξ0

ωωωωωωωωωρ + · · ·+
∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣∣∣
=

∣∣∣∣∣ f(ξ0)
∫ ξ1
ξ0

fρ · · · f(ξm)
∫ b
a fρ

ωωωωωωωωω(ξ0)
∫ ξ1
ξ0

ωωωωωωωωωρ · · · ωωωωωωωωω(ξm)
∫ b
a ωωωωωωωωωρ

∣∣∣∣∣ .
Observe that the adjoint determinants of each element

∫ ξk+1

ξk
fρ in the last ex-

pression are equal to zero since their columns are linearly dependent due to (3.3).
Therefore, applying the expansion theorem to the first row, it follows that

0 ≤
∣∣∣ ωωωωωωωωω(ξ0)

∫ ξ1
ξ0

ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·
∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∣∣∣ · ∫ b

a
fρ

−
∣∣∣ ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·

∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∫ b
a ωωωωωωωωωρ

∣∣∣ f(ξ0)

−
m∑

k=1

∣∣∣ ωωωωωωωωω(ξ0) · · ·
∫ ξk

ξk−1
ωωωωωωωωωρ

∫ ξk+1

ξk
ωωωωωωωωωρ · · ·

∫ b
a ωωωωωωωωωρ

∣∣∣ f(ξk).

Here the coefficient of
∫ b
a fρ is the positive determinantD, while the the coeffi-

cients off(ξ0), . . . , f(ξm) are exactly the numerators ofα0, . . . , αm (see above)
since the last column

∫ b
a ωωωωωωωωω can be replaced by

∫ ξm+1

ξm
ωωωωωωωωωρ. After rearranging, we

get the left hand side of the Hermite–Hadamard-type inequality. �

THEOREM 3.6. Let ωωωωωωωωω = (ω1, . . . , ω2m) be a Chebyshev system on[a, b] and
ρ : [a, b] → R be a positive integrable function. Then, there exist uniquely deter-
mined base pointsξ1, . . . , ξm andη1, . . . , ηm−1 of ]a, b[ such that

m∑
k=1

αkωωωωωωωωω(ξk) =
∫ b

a
ωωωωωωωωωρ = β0ωωωωωωωωω(a) +

m−1∑
k=1

βkωωωωωωωωω(ηk) + βmωωωωωωωωω(b).

The coefficientsα1, . . . , αm andβ0, . . . , βm are positive and uniquely determined,
too. Furthermore, for any generalizedωωωωωωωωω-convex functionf : [a, b] → R, the
following Hermite–Hadamard-type inequality holds

m∑
k=1

αkf(ξk) ≤
∫ b

a
fρ ≤ β0f(a) +

m−1∑
k=1

βkf(ηk) + βmf(b).
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PROOF. To prove the left hand side inequality, take the unique interior base
pointsξ1, . . . , ξm and coefficientsα1, . . . , αm fulfilling the representation

(3.4)
∫ b

a
ωωωωωωωωωρ =

m∑
k=1

αkωωωωωωωωω(ξk)

guaranteed by Theorem 3.4. Definingξ0 := a andξm+1 := b, consider the fol-
lowing system of linear equations∫ ξm+1

ξm

ωωωωωωωωωρ =
m∑

k=1

(
c∗k

∫ ξk

ξk−1

ωωωωωωωωωρ + ckωωωωωωωωω(ξk)
)

where the unknowns arec∗1, c1, . . . , c
∗
m, cm. Due to the Chebyshev property ofωωωωωωωωω

and the positivity ofρ, its base determinant

D1 :=
∣∣∣ ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·

∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∣∣∣
is positive hence the system has a unique solution(c∗1, c1, . . . , c

∗
m, cm). On the

other hand, the representation (3.4) shows that(−1, α1, . . . ,−1, αm) is also a so-
lution. Thus, the coefficients can be obtained by Cramer’s Rule:

α1 =
1

D1

∣∣∣ ∫ ξ1
ξ0

ωωωωωωωωωρ
∫ ξ2
ξ1

ωωωωωωωωωρ · · ·
∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣
αk =

1
D1

∣∣∣ ∫ ξ1
ξ0

ωωωωωωωωωρ · · ·
∫ ξk

ξk−1
ωωωωωωωωωρ

∫ ξk+1

ξk
ωωωωωωωωωρ · · ·

∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣ .
Suppose now thatf : [a, b] → R is a generalized(2m)-convex function with

respect toωωωωωωωωω. Then, for all elementstk of ]ξk, ξk+1[, the following inequality holds:

0 ≤
∣∣∣∣ f(t0) f(ξ1) · · · f(ξm) f(tm)

ωωωωωωωωω(t0) ωωωωωωωωω(ξ1) · · · ωωωωωωωωω(ξm) ωωωωωωωωω(tm)

∣∣∣∣ .
Therefore,

0 ≤

∣∣∣∣∣
∫ ξ1
ξ0

fρ f(ξ1) · · · f(ξm)
∫ ξm+1

ξm
fρ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · · ωωωωωωωωω(ξm)

∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣∣∣
=

∣∣∣∣∣
∫ ξ1
ξ0

fρ f(ξ1) · · · f(ξm)
∫ ξ1
ξ0

fρ + · · ·+
∫ ξm+1

ξm
fρ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · · ωωωωωωωωω(ξm)

∫ ξ1
ξ0

ωωωωωωωωωρ + · · ·+
∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣∣∣
=

∣∣∣∣∣
∫ ξ1
ξ0

fρ f(ξ1) · · · f(ξm)
∫ b
a fρ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · · ωωωωωωωωω(ξm)

∫ b
a ωωωωωωωωωρ

∣∣∣∣∣ .
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In the last expression, the adjoint determinant of each element
∫ ξk+1

ξk
fρ are equal

to zero since their columns are linearly dependent due to (3.4). Applying the ex-
pansion theorem to the first row, we arrive at the inequality

0 ≤
∣∣∣ ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·

∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∣∣∣ · ∫ b

a
fρ

−
∣∣∣ ∫ ξ1

ξ0
ωωωωωωωωωρ

∫ ξ2
ξ1

ωωωωωωωωωρ · · ·
∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∫ b
a ωωωωωωωωωρ

∣∣∣ f(ξ1)

−
m∑

k=2

∣∣∣ ∫ ξ1
ξ0

ωωωωωωωωωρ · · ·
∫ ξk

ξk−1
ωωωωωωωωωρ

∫ ξk+1

ξk
ωωωωωωωωωρ · · ·

∫ b
a ωωωωωωωωωρ

∣∣∣ f(ξk).

Here the coefficient of
∫ b
a fρ is the positiveD1; moreover, the coefficients of

f(ξ1), . . . , f(ξm) are exactly the numerators ofα1, . . . , αm since the last column∫ b
a ωωωωωωωωωρ can be replaced by

∫ ξm+1

ξm
ωωωωωωωωωρ. After rearranging, we get the left hand side

of the Hermite–Hadamard-type inequality.
For the right hand side inequality, take the uniquely determined interior base

pointsη1, . . . , ηm−1 and coefficientsβ0, . . . , βm so that the representation

(3.5)
∫ b

a
ωωωωωωωωωρ = β0ωωωωωωωωω(a) +

m−1∑
k=1

βkωωωωωωωωω(ηk) + βmωωωωωωωωω(b)

hold. Definingη0 := a andηm := b, consider the following system of linear
equations∫ ηm

ηm−1

ωωωωωωωωωρ = c0ωωωωωωωωω(η0) +
m−1∑
k=1

(
c∗k

∫ ηk

ηk−1

ωωωωωωωωωρ + ckωωωωωωωωω(ηk)
)

+ cmωωωωωωωωω(ηm)

where the unknowns arec0, c
∗
1, c1, . . . , c

∗
m−1, cm−1, cm. Due to the Chebyshev

property ofωωωωωωωωω and the positivity ofρ, its base determinant

D2 :=
∣∣∣ ωωωωωωωωω(η0)

∫ η1

η0
ωωωωωωωωωρ ωωωωωωωωω(η1) · · ·

∫ ηm−1

ηm−2
ωωωωωωωωωρ ωωωωωωωωω(ηm−1) ωωωωωωωωω(ηm)

∣∣∣
is positive hence the system has a unique solutionc0, c

∗
1, c1, . . . , c

∗
m−1, cm−1, cm.

The representation (3.5) shows that(β0,−1, β1, . . . , βm−1,−1, βm) is also a so-
lution, therefore Cramer’s Rule can be applied:

β0 =
1

D2

∣∣∣ ∫ η1

η0
ωωωωωωωωωρ ωωωωωωωωω(η1) · · · ωωωωωωωωω(ηm−1)

∫ ηm

ηm−1
ωωωωωωωωωρ ωωωωωωωωω(ηm)

∣∣∣
βk =

1
D2

∣∣∣ ωωωωωωωωω(η0) · · ·
∫ ηk

ηk−1
ωωωωωωωωωρ

∫ ηk+1

ηk
ωωωωωωωωωρ · · ·

∫ ηm

ηm−1
ωωωωωωωωωρ ωωωωωωωωω(ηm)

∣∣∣
βm =

1
D2

∣∣∣ ωωωωωωωωω(η0)
∫ η1

η0
ωωωωωωωωωρ · · ·

∫ ηm−1

ηm−2
ωωωωωωωωωρ ωωωωωωωωω(ηm−1)

∫ ηm

ηm−1
ωωωωωωωωωρ

∣∣∣ .
These coefficients are positive since even changes are needed to transfer the col-
umn

∫ ηm

ηm−1
ωωωωωωωωωρ to the adequate place.
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If a functionf : [a, b] → R is a generalized(2m)-convex with respect toωωωωωωωωω,
then we arrive at the inequality

0 ≤

∣∣∣∣∣ f(η0)
∫ η1

η0
fρ f(η1) · · ·

∫ ηm−1

ηm−2
fρ f(ηm)

∫ b
a fρ

ωωωωωωωωω(η0)
∫ η1

η0
ωωωωωωωωωρ ωωωωωωωωω(η1) · · ·

∫ ηm−1

ηm−2
ωωωωωωωωωρ ωωωωωωωωω(ηm)

∫ b
a ωωωωωωωωωρ

∣∣∣∣∣ ,
whence an analogous argument to the previous one completes the proof.�

3.4. An alternative approach in a particular case

To prove the main results, the main point is the existence of the representa-
tions of Theorem D. These representations can also be considered as systems of
nonlinear equations where the unknowns are the coefficients and the base points.
The number of the equations and the unknowns coincide in each case. In those
cases when only one interior base point is involved, the solubility of the system
of equations can directly be verified without applying the Krein–Markov theory of
moment spaces.

THEOREM 3.7. Let ωωωωωωωωω = (ω1, ω2, ω3) be a Chebyshev system on[a, b] and
ρ : [a, b] → R be a positive integrable function. Then, there exist unique elements
ξ, η of ]a, b[ and uniquely determined positive coefficientsc1, c2 and d1, d2 such
that

c1ωωωωωωωωω(a) + c2ωωωωωωωωω(ξ) =
∫ b

a
ωωωωωωωωωρ = d1ωωωωωωωωω(η) + d2ωωωωωωωωω(b).

Furthermore, if a functionf : [a, b] → R is generalized3-convex with respect to
ωωωωωωωωω, then the following Hermite–Hadamard-type inequality holds

c1f(a) + c2f(ξ) ≤
∫ b

a
fρ ≤ d1f(η) + d2f(b).

PROOF. We shall restrict the process of the proof only on the existence of the
interior pointξ. To do this, define the functionF : [a, b] → R by the formula

F (x) :=
∣∣∣ ωωωωωωωωω(a)

∫ x
a ωωωωωωωωωρ

∫ b
a ωωωωωωωωωρ

∣∣∣ :=
∣∣∣∣∣∣∣

ω1(a)
∫ x
a ω1ρ

∫ b
a ω1ρ

ω2(a)
∫ x
a ω2ρ

∫ b
a ω2ρ

ω3(a)
∫ x
a ω3ρ

∫ b
a ω3ρ

∣∣∣∣∣∣∣ .
Then,F is continuous on[a, b] andF (a) = F (b) = 0. Further on,F (x) 6= 0 if
x ∈]a, b[ due to the Chebyshev property ofωωωωωωωωω and the positivity ofρ. For simplicity,
we may assume thatF is positive on]a, b[. Therefore, by Weierstrass’ theorem,
there existsξ ∈]a, b[ such that

F (ξ) = max
[a,b]

F.

Assume thatx ∈]ξ, b]. Then, the maximal property ofξ yields the inequality

0 ≥ F (x)− F (ξ)∫ x
ξ ρ

=

∣∣∣∣∣ ωωωωωωωωω(a)

∫ x
ξ ωωωωωωωωωρ∫ x
ξ ρ

∫ b
a ωωωωωωωωωρ

∣∣∣∣∣ .
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The central column of the determinant tends toωωωωωωωωω(ξ) asx tends toξ since the
following estimations are valid fork = 1, 2, 3:

min
[ξ,x]

ωk =
min[ξ,x] ωk

∫ x
ξ ρ∫ x

ξ ρ
≤
∫ x
ξ ωkρ∫ x

ξ ρ
≤

max[ξ,x] ωk

∫ x
ξ ρ∫ x

ξ ρ
= max

[ξ,x]
ωk.

Therefore ∣∣∣ ωωωωωωωωω(a) ωωωωωωωωω(ξ)
∫ b
a ωωωωωωωωωρ

∣∣∣ ≤ 0.

Choosingx ∈ [a, ξ[ and using the maximal property ofξ again, we get the opposite
inequality with the same argument and arrive at the identity∣∣∣ ωωωωωωωωω(a) ωωωωωωωωω(ξ)

∫ b
a ωωωωωωωωωρ

∣∣∣ = 0.

Thus, the linear independence ofωωωωωωωωω(a) andωωωωωωωωω(ξ) yields that there exist coefficients
c1 andc2 such that

c1ωωωωωωωωω(a) + c2ωωωωωωωωω(ξ) =
∫ b

a
ωωωωωωωωωρ.

The right hand side inequality can be verified with an analogous argument, there-
fore the proof is omitted. �

Let us note, that if the weight functionρ is continuous, then the functionF is
differentiable and Rolle’s mean-value theorem can directly be applied.

The representations of Theorem 3.7 are linear with respect to the coefficients.
Therefore, in concrete cases, the main difficulty is to determine the interior base
pointsξ andη. Without claiming completeness, we list some examples when they
can be determined explicitly.

EXAMPLE 1. If the Chebyshev system(ω1, ω2, ω3) is defined on[a, b] by
ω1(x) = 1, ω2(x) = sinhx, ω3(x) = coshx andρ ≡ 1, then

ξ = 2 artanh

(
sinh b− sinh a− (b− a) cosh a

cosh b− cosh a− (b− a) sinh a

)
− a

η = 2 artanh

(
sinh b− sinh a− (b− a) cosh b

cosh b− cosh a− (b− a) sinh b

)
− b.

PROOF. With the above setting, the left hand side representation of Theo-
rem 3.5 reduces to the following system of nonlinear equations

c1 + c2 =
∫ b

a
1dx = b− a

c1 sinh a + c2 sinh ξ =
∫ b

a
sinhxdx = cosh b− cosh a

c1 cosh a + c2 cosh ξ =
∫ b

a
coshxdx = sinh b− sinh a
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where the three unknowns arec1, c2 andξ, respectively. Multiplying the first equa-
tion by sinh a and subtracting it from the second one, then multiplying again the
first equation bycosh a and subtracting it from the third one, the coefficientc1 can
be eliminated and it follows

c2(sinh ξ − sinh a) = cosh b− cosh a− (b− a) sinh a

c2(cosh ξ − cosh a) = sinh b− sinh a− (b− a) cosh a.

Applying the well known additional properties of hyperbolic functions for the
identitiesξ = (ξ + a)/2 + (ξ − a)/2 and a = (ξ + a)/2 − (ξ − a)/2, the
left hand side of both equations can be written into product form:

2c2 cosh
(

ξ + a

2

)
sinh

(
ξ − a

2

)
= cosh b− cosh a− (b− a) sinh a

2c2 sinh
(

ξ + a

2

)
sinh

(
ξ − a

2

)
= sinh b− sinh a− (b− a) cosh a.

The left hand side of the first equation differs from zero sinceξ 6= a. Therefore,
dividing the second equation by the first one, we get the equation

tanh
(

ξ + a

2

)
=

sinh b− sinh a− (b− a) cosh a

cosh b− cosh a− (b− a) sinh a
,

whence the desired expression ofξ is obtained. For determiningη, we shell con-
sider the following system of nonlinear equation:

d1 + d2 = b− a

d1 sinh η + d2 sinh b = cosh b− cosh a

d1 cosh η + d2 cosh b = sinh b− sinh a.

In this case, the coefficientd2 can be eliminated with a similar method to the
previous one. The new system of equation, due to the additional formulae again,
can be written into the form

2d1 cosh
(

b + η

2

)
sinh

(
b− η

2

)
= cosh b− cosh a− (b− a) sinh b

2d1 sinh
(

b + η

2

)
sinh

(
b− η

2

)
= sinh b− sinh a− (b− a) cosh b.

This system, analogously to the previous case, yields the equation

tanh
(

b + η

2

)
=

sinh b− sinh a− (b− a) cosh b

cosh b− cosh a− (b− a) sinh b
,

whence the base pointη can be expressed easily. �

The proofs of the subsequent examples are similar to the previous one, there-
fore they are omitted.
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EXAMPLE 2. If the Chebyshev system(ω1, ω2, ω3) is defined on[a, b] ⊂] −
π, π[ by ω1(x) = 1, ω2(x) = sin x, ω3(x) = cos x andρ ≡ 1, then

ξ = 2 arctan
(

sin a− sin b + (b− a) cos a

cos a− cos b− (b− a) sin a

)
− a

η = 2 arctan
(

sin a− sin b + (b− a) cos b

cos a− cos b− (b− a) sin b

)
− b.

EXAMPLE 3. If the Chebyshev system(ω1, ω2, ω3) is defined on[a, b] by
ω1(x) = 1, ω2(x) = exp x, ω3(x) = exp 2x andρ ≡ 1, then

ξ = log
(

exp 2b− exp 2a− 2(b− a) exp 2a

2(exp b− exp a− (b− a) exp a)
− exp a

)
η = log

(
exp 2b− exp 2a− 2(b− a) exp 2b

2(exp b− exp a− (b− a) exp b)
− exp b

)
.

EXAMPLE 4. If, for p > 0, the Chebyshev system(ω1, ω2, ω3) is defined on
[a, b] ⊂ [0,+∞[ by ω1(x) = 1, ω2(x) = xp, ω3(x) = x2p andρ ≡ 1, then

ξ =
(

p + 1
2p + 1

· b2p+1 − a2p+1 − (2p + 1)(b− a)a2p

bp+1 − ap+1 − (p + 1)(b− a)ap
− ap

)1/p

η =
(

p + 1
2p + 1

· b2p+1 − a2p+1 − (2p + 1)(b− a)b2p

bp+1 − ap+1 − (p + 1)(b− a)bp
− bp

)1/p

.

The particular casep = 1 of the last example gives a corollary of Theorem 1.10
for polynomially3-convex functions. For3 dimensional Chebyshev systems gen-
erated by arbitrary power functions, the interior base points in general, cannot be
expressed explicitly.

The proof of Theorem 3.7 is applicable for generalized2-convexity, and gives
a different approach followed in Theorem 2.10. We can also state right hand side
Hermite–Hadamard-type inequality for generalized4-convex functions.

THEOREM 3.8. Let ωωωωωωωωω = (ω1, ω2, ω3, ω4) be a Chebyshev system on[a, b] and
ρ : [a, b] → R be a positive integrable function. Then, there exist a unique element
ξ of ]a, b[ and uniquely determined positive coefficientsc1, c2, c3 such that∫ b

a
ωωωωωωωωωρ = c1ωωωωωωωωω(a) + c2ωωωωωωωωω(ξ) + c3ωωωωωωωωω(b).

Furthermore, if a functionf : [a, b] → R is generalized4-convex with respect to
ωωωωωωωωω, then the following Hermite–Hadamard-type inequality holds∫ b

a
fρ ≤ c1f(a) + c2f(ξ) + c3f(b).
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HINT. Apply the same argument as in the proof of Theorem 3.7 for the func-
tion F : [a, b] → R defined by the formula

F (x) :=
∣∣∣ ωωωωωωωωω(a)

∫ x
a ωωωωωωωωωρ ωωωωωωωωω(b)

∫ b
a ωωωωωωωωωρ

∣∣∣ :=
∣∣∣∣∣∣∣∣∣

ω1(a)
∫ x
a ω1ρ ω1(b)

∫ b
a ω1ρ

ω2(a)
∫ x
a ω2ρ ω2(b)

∫ b
a ω2ρ

ω3(a)
∫ x
a ω3ρ ω3(b)

∫ b
a ω3ρ

ω4(a)
∫ x
a ω4ρ ω4(b)

∫ b
a ω4ρ

∣∣∣∣∣∣∣∣∣ .
�

For example, ifωωωωωωωωω(x) := (cosh x, sinhx, cosh 2x, sinh 2x), then one can
check that the interior base point of the inequality is exactly the midpoint of the
domain. Unfortunately, the method fails if someone tries to use it for proving left
hand side Hermite–Hadamard-type inequality for a generalized4-convex function
since, by the even case of Theorem D, the existence of two interior base points
should be guaranteed. For similar reasons, the “existence” part in the proof of
Theorem 3.7 cannot be applied for generalizedn-convex functions ifn > 4.





CHAPTER 4

Characterizations via Hermite–Hadamard inequalities

Under some weak regularity conditions, the Hermite–Hadamard-inequality
characterizes(standard) convexity (see [Kuc85, Excersice 8. p. 205]). The aim
of this chapter is to verify analogous results for(ω1, ω2)-convexity. To do this, the
most important auxiliary tool turns out to be some characterization properties of
continuous,nongeneralized2-convex functions.

4.1. Further properties of generalized lines

In the further investigations, two properties of generalized lines are crucial.
The first one improves the statement of Lemma 2.2 and states that, on compact
intervals, generalized lines are uniformly non bounded.

LEMMA 4.1. Let (ω1, ω2) be a Chebyshev system on an intervalI. Then, for
any compact subinterval ofI and positive numberK, there existsω ∈ L(ω1, ω2)
such thatω > K on the compact subinterval.

PROOF. According to Lemma 2.2, there exist coefficientsα, β such that the
generalized lineαω1 + βω2 is positive on the interior ofI. Therefore, if[x, y] is a
compact subinterval ofI, m := min{αω1(t) + βω2(t) | t ∈ [x, y]} > 0. Defining
the coefficientsα∗ andβ∗ by the formulae

α∗ :=
αK

m
β∗ :=

βK

m
,

the generalized lineω := α∗ω1 + β∗ω2 is strictly greater thanK on [x, y]. �

The second important property concerns the convergence of generalized lines.
It turns out that pointwise convergence is not only a necessary but a sufficient con-
dition for the uniform convergence of sequences of generalized lines. Let us note
that an analogous result remains true for generalized polynomials in the higher-
order case.

LEMMA 4.2. Let(ω1, ω2) be a Chebyshev system on an intervalI, furthermore
ω = αω1 + βω2 andωn = αnω1 + βnω2 (n ∈ N) be generalized lines. Then, the
following statements are equivalent:

(i) there exist elementsx < y of I such thatωn(x) → ω(x) andωn(y) → ω(y);
(ii) the sequencesαn andβn are convergent furthermoreαn → α andβn → β;

(iii) ωn → ω uniformly on each compact subset ofI.

57
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PROOF. (i) ⇒ (ii). Applying Cramer’s Rule and the convergence properties
of ωn(x) andωn(y), one can easily get that

α =

∣∣∣∣ ω(x) ω2(x)
ω(y) ω2(y)

∣∣∣∣∣∣∣∣ ω1(x) ω2(x)
ω1(y) ω2(y)

∣∣∣∣ = lim
n→∞

∣∣∣∣ ωn(x) ω2(x)
ωn(y) ω2(y)

∣∣∣∣∣∣∣∣ ω1(x) ω2(x)
ω1(y) ω2(y)

∣∣∣∣ = lim
n→∞

αn.

The convergence ofβn can be obtained similarly.
(ii) ⇒ (iii). Let [x, y] be a compact subinterval ofI, furthermoret ∈ [x, y]

arbitrary. Due to the continuity of the functionsω1 andω2, there existsK > 0
such that

max

{
sup
[x,y]

|ω1(t) |, sup
[x,y]

|ω2(t) |

}
≤ K.

Therefore,

|ωn(t)− ω(t) | = |αnω1(t)− αω1(t) + βnω2(t)− βω2(t) |
≤ |αn − α ||ω1(t) |+ |βn − β ||ω2(t) |
≤ K

(
|αn − α |+ |βn − β |

)
→ 0

asn →∞; henceωn → ω uniformly on[x, y].
(iii) ⇒ (i). Trivial. �

Under the assumption of continuity, if a function is not convex, then it must be
locally strictly concave somewhere. The following theorem generalizes this result
for non(ω1, ω2)-convexity.

THEOREM 4.3. Let (ω1, ω2) be a Chebyshev system on an intervalI, further-
moref : I → R be a continuous function. Then, the following assertions are
equivalent:

(i) f is not(ω1, ω2)-convex;
(ii) there exist elementsx < y of I such thatω < f on ]x, y[ whereω is the

generalized line determined by the properties

ω(x) = f(x), ω(y) = f(y);

(iii) there exist elementsx < p < y of I and a generalized lineω such thatω ≥ f
on [x, y], moreover

f(x) < ω(x), f(p) = ω(p), f(y) < ω(y);

(iv) there existsp ∈ I◦ such thatf is locally strictly (ω1, ω2)-concave atp, that
is, there exist elementsx < p < y of I such that, for allx < u < p < v < y,
the following inequality holds:∣∣∣∣∣∣

f(u) f(p) f(v)
ω1(u) ω1(p) ω1(v)
ω2(u) ω2(p) ω2(v)

∣∣∣∣∣∣ < 0.
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PROOF. (i) ⇒ (ii). If f is not (ω1, ω2)-convex, then there exist elements
x0 < p < y0 of I such thatω(p) < f(p), whereω is the generalized line deter-
mined by the propertiesω(x0) = f(x0) andω(y0) = f(y0) (see assertion(vi) of
Theorem 2.4). Define the functionF : [x0, y0] → R by F := f − ω furthermore
the elementsx andy by the formulae

x := sup{ t |F (t) = 0, x0 ≤ t < p }
y := inf{ t |F (t) = 0, p < t ≤ y0 }.

Clearly,x0 ≤ x < p < y ≤ y0 hold; moreover,F (x) = F (y) = 0 andF > 0
on ]x, y[ due to the continuity ofF . That is,ω(x) = f(x), ω(y) = f(y) and
f(t) > ω(t) for all t ∈]x, y[.

(ii) ⇒ (iii). Take the elementsx < y of I and the generalized lineω fulfilling
the propertiesω(x) = f(x), ω(y) = f(y) andω|]x,y[ < f |]x,y[. Define, for all
t ∈ R, the family of “parallel” generalized linesωt by the conditions

ωt(x) = ω(x) + t, ωt(y) = ω(y) + t

Observe first thatωt|[x,y] > f |[x,y] for “sufficiently large” t. Indeed, take the
generalized lineω∗ satisfying the inequalityω∗|[x,y] > max f |[x,y] and choose
t > 0 such thatωt(x) > ω∗(x) andωt(y) > ω∗(y) hold. (The existence ofω∗

is guaranteed by Lemma 4.1.) Then,ωt|[x,y] > ω∗|[x,y] due to Lemma 2.1 hence
ωt|[x,y] > f |[x,y]. On the other hand, a similar argument to the previous one yields
the inequalitiesωt|[x,y] < ω|[x,y] ≤ f |[x,y] for all t < 0. Therefore,

t0 := inf{t ∈ R |ωt|[x,y] > f |[x,y]} ∈ R.

By definition,ωt0 ≥ f on [x, y]. Assume indirectly that this inequality is strict.
Then, according to the continuity ofωt0 andf , there existsε > 0 such that

f + ε < ωt0

on [x, y]. Consider the sequence of generalized linesωn determined by the condi-
tions

ωn(x) := ω(x) + t0 −
1
n

ωn(y) := ω(y) + t0 −
1
n

.

Lemma 2.1 implies that(ωn) is strictly monotone increasing; further on, according
to Lemma 4.2,ωn → ωt0 uniformly on the compact interval[x, y] sinceωn(x) →
ωt0(x) andωn(y) → ωt0(y). Hence, there existsn0 ∈ N satisfying the inequalities

ωn0 < ωt0 < ωn0 +
ε

2
.

Comparing this to the previous one, it follows that

f +
ε

2
< ωn0 < ωt0 ,

which contradicts the definition oft0 sinceωn can also be written into the form
ωt0−1/n. Therefore, the choiceωt0 satisfies the requirements.
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(iii) ⇒ (iv). Due to the continuity of the functionsf andω, we may assume
that p is the minimal element of]x, y[ fulfilling the properties of the assertion.
Then,f(u) < ω(u) if x < u < p andf(v) ≤ ω(v) if p < v < y. Therefore,∣∣∣∣∣∣

f(u) f(p) f(v)
ω1(u) ω1(p) ω1(v)
ω2(u) ω2(p) ω2(v)

∣∣∣∣∣∣ <
∣∣∣∣∣∣

ω(u) ω(p) ω(v)
ω1(u) ω1(p) ω1(v)
ω2(u) ω2(p) ω2(v)

∣∣∣∣∣∣
since the adjoint determinants off(u) andf(v) are positive, furthermore,f andω
coincide atp. However,ω is a linear combination ofω1 andω2 hence the left hand
side of the previous inequality equals zero.

(iv) ⇒ (i). Trivial. �

The next result shows that(ω1, ω2)-convexity, similarly to the standard one, is
a pointwise property.

COROLLARY 4.4. Let (ω1, ω2) be a Chebyshev system over the open interval
I, furthermoref : I → R be a given function. Then, the following assertions are
equivalent:

(i) f is (ω1, ω2)-convex;
(ii) f is locally (ω1, ω2)-convex, that is, each element of the domain has a neigh-

borhood where it is(ω1, ω2)-convex;
(iii) f is continuous and, for allp ∈ I, there exist elementsx < p < y of I such

that ∣∣∣∣∣∣
f(u) f(p) f(v)
ω1(u) ω1(p) ω1(v)
ω2(u) ω2(p) ω2(v)

∣∣∣∣∣∣ ≥ 0

for all x < u < p < v < y (i. e.,f is locally convexat each point).

HINT. The implications(i) ⇒ (ii) and(ii) ⇒ (iii) are trivial. For the impli-
cation(iii) ⇒ (i), the last assertion of Corollary 4.4 can be applied, which, in the
case of indirect assumption, immediately leads to contradiction. �

4.2. Hermite–Hadamard-type inequalities and(ω1, ω2)-convexity

The main results are presented in three theorems. The first and the second ones
concern the left and right hand side inequalities of Theorem 2.10 independently,
while the third one is analogous to the classical Jensen inequality.

THEOREM 4.5. Let (ω1, ω2) be a Chebyshev system on an interval[a, b] such
that ω1 is positive on]a, b[, furthermoreρ : [a, b] → R be a positive integrable
function. Define, for all elementsx < y of [a, b], the functionsξ(x, y) andc(x, y)
by the formulae

ξ(x, y) :=
(

ω2

ω1

)−1(∫ y
x ω2ρ∫ y
x ω1ρ

)
, c(x, y) =

∫ y
x ω1ρ

ω1(ξ(x, y))
.
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Then, a continuous functionf : [a, b] → R is generalized convex with respect to
(ω1, ω2) if and only if, for all elementsx < y of [a, b], it satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
≤
∫ y

x
fρ.

PROOF. The necessity is due to Theorem 2.10. For the converse assertion,
note first that the mapping(x, y) 7→ ξ(x, y) is continuous in each variable and
takes its value betweenx andy since it is a Lagrange-type mean-value. Further
on, c(x, y) andξ(x, y) are so constructed that all generalized lines (i.e., the linear
combinations ofω1 andω2) are the solutions of the functional equation

c(x, y)ω
(
ξ(x, y)

)
=
∫ y

x
ωρ (x < y).(4.1)

(For the details, see the proof of Theorem 2.10.) Assume thatf satisfies the in-
equality of the theorem and, indirectly, is not(ω1, ω2)-convex. Then, according
to assertion(iii) of Theorem 4.3, there exist elementsx < p < y of I and a
generalized lineω such thatf ≤ ω on [x, y] and

f(x) < ω(x), f(p) = ω(p), f(y) < ω(y).

If, for example,p ≤ ξ(x, y), then there isu ∈]p, y] such thatp = ξ(x, u) sinceξ is
a Lagrange-type mean-value. The inequalityf(x) < ω(x) and the continuity off
implies thatf < ω on a right hand side neighborhood ofx hence, applying (4.1),
it follows that

c(x, u)f
(
ξ(x, u)

)
≤
∫ u

x
fρ <

∫ u

x
ωρ = c(x, u)ω

(
ξ(x, u)

)
.

On the other hand, both sides have the common valuec(x, u)f(p), which is a
contradiction. �

THEOREM4.6. Let(ω1, ω2) be a Chebyshev system over an interval[a, b] such
that ω1 is positive on]a, b[, furthermoreρ : [a, b] → R be a positive integrable
function. Define, for all elementsx < y of [a, b], the functionsc1(x, y) andc2(x, y)
by the formulae

c1(x, y) =

∣∣∣∣ ∫ y
x ω1ρ ω1(y)∫ y
x ω2ρ ω2(y)

∣∣∣∣∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ , c2(x, y) =

∣∣∣∣ ω1(x)
∫ y
x ω1ρ

ω2(x)
∫ y
x ω2ρ

∣∣∣∣∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ .

Then, a continuous functionf : [a, b] → R is generalized convex with respect to
(ω1, ω2) if and only if, for all elementsx < y of [a, b], it satisfies the inequality∫ y

x
fρ ≤ c1(x, y)f(x) + c2(x, y)f(y).
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PROOF. The necessity is due to Theorem 2.10 again. Conversely, note first
thatc1(x, y) andc2(x, y) are constructed such that all generalized lines (i. e., the
linear combinations ofω1 andω2) are the solutions of the functional equation∫ y

x
ωρ = c1(x, y)ω(x) + c2(x, y)ω(y).(4.2)

(For the details, see the proof of Theorem 2.10.) Assume indirectly thatf is not
(ω1, ω2)-convex. Then, according to assertion(ii) of Theorem 4.3, there exist
elementsx < y of I and a generalized lineω such thatω(x) = f(x), ω(y) = f(y)
andω < f on ]x, y[. Therefore,∫ y

x
ωρ <

∫ y

x
fρ ≤ c1(x, y)f(x) + c2(x, y)f(y)

= c1(x, y)ω(x) + c2(x, y)ω(y)

which contradicts (4.2). �

THEOREM 4.7. Let (ω1, ω2) be a Chebyshev system onI andf : I → R be a
continuous function. Keeping the notations of Theorem 4.6 and Theorem 4.5,f is
(ω1, ω2)-convex if and only if, for all elementsx < y of I, it satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
≤ c1(x, y)f(x) + c2(x, y)f(y).

PROOF. The necessity part has already been proved in Theorem 2.10. For the
sufficiency, observe first that the functionsc, c1, c2 andξ are so constructed that all
the generalized lines are the solutions of the functional equation

c(x, y)ω
(
ξ(x, y)

)
= c1(x, y)ω(x) + c2(x, y)ω(y) (x < y)

since both sides have the common value
∫ y
x ωρ. Assume indirectly that a function

f : I → R satisfies the inequality of the theorem and is not generalized convex
with respect to(ω1, ω2). Then, there exist elementsx < y of I and a generalized
line ω fulfilling the conditions

ω(x) = f(x), ω|]x,y[ < f |]x,y[, ω(y) = f(y)

due to Theorem 4.3. Therefore, taking the above observation into consideration,
one can immediately get that

c(x, y)f
(
ξ(x, y)

)
≤ c1(x, y)f(x) + c2(x, y)f(y)
= c1(x, y)ω(x) + c2(x, y)ω(y)
= c(x, y)ω

(
ξ(x, y)

)
< c(x, y)f

(
ξ(x, y)

)
,

which is a contradiction. �

To give a unified view, the previous results are combined in the subsequent
corollary. This corollary, Theorem 2.4, Corollary 2.6, Theorem 2.7 and Corol-
lary 4.4 together are a comprehensive characterization of generalized convexity
induced by two dimensional Chebyshev systems.
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COROLLARY 4.8. Let (ω1, ω2) be a Chebyshev system onI such thatω1 is
positive onI◦, furthermoreρ : I → R be a positive integrable function. Keep-
ing the notations of Theorem 4.5, Theorem 4.6 and Theorem 4.7, the following
assertions are equivalent for any functionf : I → R:

(i) f is generalized convex with respect to(ω1, ω2);
(ii) f is continuous and, for all elementsx < y of I, satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
≤
∫ y

x
fρ;

(iii) f is continuous and, for all elementsx < y of I, satisfies the inequality∫ y

x
fρ ≤ c1(x, y)f(x) + c2(x, y)f(y);

(iv) f is continuous and, for all elementsx < y of I, satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
≤ c1(x, y)f(x) + c2(x, y)f(y).

The question arises, quite evidently,whether Hermite–Hadamard-type in-
equalities also characterize generalized convexity in the general case or not. To
give an affirmative answer even in the polynomial case remains an open problem
and may be the subject of further researches.





Summary

The notion of convexity can be extended applyingChebyshev systems(consult
the definitions of the INTRODUCTION). The aim of the dissertation is to generalize
the classical Hermite–Hadamard inequality for the extended setting.

In CHAPTER 1 we deal with the case ofpolynomial convexityand apply var-
ious methods of numerical analysis, like Gauss-type quadrature formulae (The-
orem 1.1, Theorem 1.2, Theorem 1.3, Theorem 1.4) and Hermite-interpolation.
Two results of Popoviciu (Theorem A and Theorem B) are also crucial. For tech-
nical reasons, further auxiliary tools are developed and applied (see Theorem 1.5,
Lemma 1.6, Lemma 1.7). The main results are presented in two theorems (Theo-
rem 1.8 and Theorem 1.9) distinguishing the parity of the order of convexity:

THEOREM. Let ρ : [a, b] → R be a positive integrable function. Denote the
zeros ofPm by ξ1, . . . , ξm wherePm is themth degree member of the orthogo-
nal polynomial system on[a, b] with respect to the weight function(x − a)ρ(x),
furthermore denote the zeros ofQm by η1, . . . , ηm whereQm is themth degree
member of the orthogonal polynomial system on[a, b] with respect to the weight
function(b− x)ρ(x). Define the coefficientsα0, . . . , αm andβ1, . . . , βm+1 by the
formulae

α0 :=
1

P 2
m(a)

∫ b

a
P 2

m(x)ρ(x)dx,

αk :=
1

ξk − a

∫ b

a

(x− a)Pm(x)
(x− ξk)P ′

m(ξk)
ρ(x)dx

and

βk :=
1

b− ηk

∫ b

a

(b− x)Qm(x)
(x− ηk)Q′

m(ηk)
ρ(x)dx,

βm+1 :=
1

Q2
m(b)

∫ b

a
Q2

m(x)ρ(x)dx.

If a functionf : [a, b] → R is polynomially(2m + 1)-convex, then it satisfies the
following Hermite–Hadamard-type inequality

α0f(a) +
m∑

k=1

αkf(ξk) ≤
∫ b

a
fρ ≤

m∑
k=1

βkf(ηk) + βm+1f(b).

65
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THEOREM. Let ρ : [a, b] → R be a positive integrable function. Denote the
zeros ofPm by ξ1, . . . , ξm wherePm is themth degree member of the orthogonal
polynomial system on[a, b] with respect to the weight functionρ(x), and denote
the zeros ofQm−1 byη1, . . . , ηm−1 whereQm−1 is the(m− 1)st degree member
of the orthogonal polynomial system on[a, b] with respect to the weight function
(b − x)(x − a)ρ(x). Define the coefficientsα1, . . . , αm andβ0, . . . , βm+1 by the
formulae

αk :=
∫ b

a

Pm(x)
(x− ξk)P ′

m(ξk)
ρ(x)dx

and

β0 =
1

(b− a)Q2
m−1(a)

∫ b

a
(b− x)Q2

m−1(x)ρ(x)dx,

βk =
1

(b− ηk)(ξk − a)

∫ b

a

(b− x)(x− a)Qm−1(x)
(x− ηk)Q′

m−1(ηk)
ρ(x)dx,

βm+1 =
1

(b− a)Q2
m−1(b)

∫ b

a
(x− a)Q2

m−1(x)ρ(x)dx.

If a function f : [a, b] → R is polynomially(2m)-convex, then it satisfies the
following Hermite–Hadamard-type inequality

m∑
k=1

αkf(ξk) ≤
∫ b

a
fρ ≤ β0f(a) +

m−1∑
k=1

βkf(ηk) + βmf(b).

Specializing the weight functionρ ≡ 1, the roots of the inequalities can be
obtained as convex combinations of the endpoints of the domain. The coefficients
of the convex combinations are the zeros of certain orthogonal polynomials on
[0, 1] in both cases. Observe that interchanging the role of the endpoints in any
side of the inequality concerning the odd order case, we obtain the other side of
the inequality.

THEOREM. Let, form ≥ 0, the polynomialPm be defined by the formula

Pm(x) :=

∣∣∣∣∣∣∣∣∣
1 1

2 · · · 1
m+1

x 1
3 · · · 1

m+2
...

...
...

...
xm 1

m+2 · · · 1
2m+1

∣∣∣∣∣∣∣∣∣ .
Then,Pm hasm pairwise distinct zerosλ1, . . . , λm in ]0, 1[. Define the coefficients
α0, . . . , αm by

α0 :=
1

P 2
m(0)

∫ 1

0
P 2

m(x)dx,

αk :=
1
λk

∫ 1

0

xPm(x)
(x− λk)P ′

m(λk)
dx.



67

If a functionf : [a, b] → R is polynomially(2m + 1)-convex, then it satisfies the
following Hermite–Hadamard-type inequality

α0f(a) +
m∑

k=1

αkf
(
(1− λk)a + λkb

)
≤ 1

b− a

∫ b

a
f(x)dx

≤
m∑

k=1

αkf
(
λka + (1− λk)b

)
+ α0f(b).

THEOREM. Let, form ≥ 1, the polynomialsPm andQm−1 be defined by the
formulae

Pm(x) :=

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

m
x 1

2 · · · 1
m+1

...
...

...
...

xm 1
m+1 · · · 1

2m

∣∣∣∣∣∣∣∣∣ ,

Qm−1(x) :=

∣∣∣∣∣∣∣∣∣∣
1 1

2·3 · · · 1
m(m+1)

x 1
3·4 · · · 1

(m+1)(m+2)
...

...
...

...
xm−1 1

(m+1)(m+2) · · · 1
(2m−1)2m

∣∣∣∣∣∣∣∣∣∣
.

Then,Pm hasm pairwise distinct zerosλ1, . . . , λm in ]0, 1[ andQm−1 hasm− 1
pairwise distinct zerosµ1, . . . , µm−1 in ]0, 1[, respectively. Define the coefficients
α1, . . . , αm andβ0, . . . , βm by

αk :=
∫ 1

0

Pm(x)
(x− λk)P ′

m(λk)
dx

and

β0 :=
1

Q2
m−1(0)

∫ 1

0
(1− x)Q2

m−1(x)dx,

βk :=
1

(1− µk)µk

∫ 1

0

x(1− x)Qm−1(x)
(x− µk)Q′

m−1(µk)
dx,

βm :=
1

Q2
m−1(1)

∫ 1

0
xQ2

m−1(x)dx.

If a function f : [a, b] → R is polynomially(2m)-convex, then it satisfies the
following Hermite–Hadamard-type inequality

m∑
k=1

αkf
(
(1− λk)a + λkb

)
≤ 1

b− a

∫ b

a
f(x)dx

≤ β0f(a) +
m−1∑
k=1

βkf
(
(1− µk)a + µkb

)
+ βmf(b).
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In CHAPTER 2 we study the case ofgeneralized2-convexityor, in other
terms,(ω1, ω2)-convexity. After some technical preambles (such as Lemma 2.1,
Lemma 2.2, Lemma 2.3), the first important result of the chapter (Theorem 2.4)
gives various characterizations of generalized2-convex functions:

THEOREM. Let (ω1, ω2) be a Chebyshev system over an intervalI such that
ω1 is positive onI◦. The following statements are equivalent:

(i) f : I → R is (ω1, ω2)-convex;
(ii) for all elementsx < y < z of I we have that∣∣∣∣ f(y) f(z)

ω1(y) ω1(z)

∣∣∣∣∣∣∣∣ ω1(y) ω1(z)
ω2(y) ω2(z)

∣∣∣∣ ≤
∣∣∣∣ f(x) f(y)

ω1(x) ω1(y)

∣∣∣∣∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ ;
(iii) for all x0 ∈ I◦ there existα, β ∈ R such that

αω1(x0) + βω2(x0) = f(x0),
αω1(x) + βω2(x) ≤ f(x) (x ∈ I);

(iv) for all n ∈ N, x0, x1, . . . , xn ∈ I andλ1, . . . , λn ≥ 0 satisfying the condi-
tions

n∑
k=1

λkω1(xk) = ω1(x0)

n∑
k=1

λkω2(xk) = ω2(x0)

we have that

f(x0) ≤
n∑

k=1

λkf(xk);

(v) for all x0, x1, x2 ∈ I andλ1, λ2 ≥ 0 satisfying the conditions

λ1ω1(x1) + λ2ω1(x2) = ω1(x0)
λ1ω2(x1) + λ2ω2(x2) = ω2(x0)

we have that
f(x0) ≤ λ1f(x1) + λ2f(x2);

(vi) for all elementsx < p < y of I

f(p) ≤ αω1(p) + βω2(p)

where the constantsα, β are the solutions of the system of linear equations

f(x) = αω1(x) + βω2(x)
f(y) = αω1(y) + βω2(y).
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In the standard setting this result reduces to the well known properties of con-
vex functions (compare Corollary 2.5) and also gives another characterization via
generalized supports (Corollary 2.6). It turns out that generalized convexity is
also equivalent to the (standard) convexity of a certain composite function (Theo-
rem 2.7, see below). This connection enables us to state regularity properties for
generalized2-convex functions (Theorem 2.8) and also to generalize the stability
result of (standard) convexity (Corollary 2.9).

THEOREM. Let (ω1, ω2) be a Chebyshev system on an open intervalI such
that ω1 is positive. The functionf : I → R is (ω1, ω2)-convex if and only if the
functiong : ω2/ω1(I) → R defined by the formula

g :=
f

ω1
◦
(

ω2

ω1

)−1

is convex in the standard sense.

The main result of the chapter states Hermite–Hadamard-type inequality for
generalized2-convex functions (Theorem 2.10).

THEOREM. Let (ω1, ω2) be a Chebyshev system on an interval[a, b] such that
ω1 is positive on]a, b[, furthermore, letρ : [a, b] → R be a positive integrable
function. Define the pointξ and the coefficientsc, c1, c2 by the formulae

ξ =
(

ω2

ω1

)−1
(∫ b

a ω2ρ∫ b
a ω1ρ

)
, c =

∫ b
a ω1ρ

ω1(ξ)

and

c1 =

∣∣∣∣∣
∫ b
a ω1ρ ω1(b)∫ b
a ω2ρ ω2(b)

∣∣∣∣∣∣∣∣∣ ω1(a) ω1(b)
ω2(a) ω2(b)

∣∣∣∣ , c2 =

∣∣∣∣∣ ω1(a)
∫ b
a ω1ρ

ω2(a)
∫ b
a ω2ρ

∣∣∣∣∣∣∣∣∣ ω1(a) ω1(b)
ω2(a) ω2(b)

∣∣∣∣ .

If f : [a, b] → R is an (ω1, ω2)-convex function, then the following Hermite–
Hadamard-type inequality holds

cf(ξ) ≤
∫ b

a
fρ ≤ c1f(a) + c2f(b).

The proof is based on the previous two theorems. Theorem 2.8 guarantees the
integrability of generalized2-convex functions defined on compact intervals. The
generalized support and chord properties (assertions(iii) and(vi) of Theorem 2.4)
give the left and the right hand side inequalities, respectively.

The aim of CHAPTER 3 is to show the existence of Hermite–Hadamard-type
inequalities for generalized convexity induced byarbitrary Chebyshev systems.
To prove regularity properties for generalized convex functions (Theorem 3.2), the
following characterization result (Theorem 3.1) plays the key role.
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THEOREM. Let ωωωωωωωωω = (ω1, . . . , ωn) be a Chebyshev system over an intervalI.
Then, for a functionf : I → R, the following statements are equivalent:

(i) f is generalized convex with respect toωωωωωωωωω;
(ii) for all y1 < · · · < yn in I, the generalized polynomialω of ω1, . . . , ωn

determined uniquely by the interpolation conditions

f(yk) = ω(yk) (k = 1, . . . , n)

satisfies the inequalities

(−1)n+k(f(y)− ω(y)) ≥ 0 (yk < y < yk+1, k = 0, . . . , n)

under the conventionsy0 := inf I andyn+1 := sup I;
(iii) keeping the previous notations and settings, for fixedk ∈ {0, . . . , n}, the

following inequality holds

(−1)n+k(f(y)− ω(y)) ≥ 0 (yk ≤ y ≤ yk+1).

Unfortunately, under such general circumstances the base points of the
Hermite–Hadamard-type inequalities cannot be expressed explicitly, we can state
only their existence (Theorem 3.4) and uniqueness (Theorem 3.3). Once hav-
ing this, the inequalities themselves can be verified applying pure linear algebraic
methods and the definition of generalized convexity. The main tool of the chap-
ter is the Markov–Krein theory of moment spaces induced by Chebyshev systems
(Theorem C and Theorem D). Distinguishing the odd and even order cases, the
main results read as follows (Theorem 3.5 and Theorem 3.6).

THEOREM. Let ωωωωωωωωω = (ω1, . . . , ω2m+1) be a Chebyshev system on[a, b] and
ρ : [a, b] → R be a positive integrable function. There exist uniquely determined
base pointsξ1, . . . , ξm andη1, . . . , ηm of ]a, b[ such that

α0ωωωωωωωωω(a) +
m∑

k=1

αkωωωωωωωωω(ξk) =
∫ b

a
ωωωωωωωωωρ =

m∑
k=1

βkωωωωωωωωω(ηk) + βm+1ωωωωωωωωω(b).

The coefficientsα0, . . . , αm and β1, . . . , βm+1 are positive and uniquely deter-
mined, too. Furthermore, for any generalizedωωωωωωωωω-convex functionf : [a, b] → R,
the following Hermite–Hadamard-type inequality holds

α0f(a) +
m∑

k=1

αkf(ξk) ≤
∫ b

a
fρ ≤

m∑
k=1

βkf(ηk) + βm+1f(b).

THEOREM. Let ωωωωωωωωω = (ω1, . . . , ω2m) be a Chebyshev system on[a, b] and letρ :
[a, b] → R be a positive integrable function. Then, there exist uniquely determined
base pointsξ1, . . . , ξm andη1, . . . , ηm−1 of ]a, b[ such that

m∑
k=1

αkωωωωωωωωω(ξk) =
∫ b

a
ωωωωωωωωωρ = β0ωωωωωωωωω(a) +

m−1∑
k=1

βkωωωωωωωωω(ηk) + βmωωωωωωωωω(b).
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The coefficientsα1, . . . , αm andβ0, . . . , βm are positive and uniquely determined,
too. Furthermore, for any generalizedωωωωωωωωω-convex functionf : [a, b] → R, the
following Hermite–Hadamard-type inequality holds

m∑
k=1

αkf(ξk) ≤
∫ b

a
fρ ≤ β0f(a) +

m−1∑
k=1

βkf(ηk) + βmf(b).

Motivated by Rolle’s mean-value theorem, an elementary approach can also
be followed (see Theorem 3.7 and Theorem 3.8) in some particular cases (that is,
when the dimension of the underlying Chebyshev system is “small”).

The classical Hermite–Hadamard inequality immediately follows from any of
the main results of the first three chapters. Without claiming completeness, at the
end of these chapters several applications and examples are presented.

CHAPTER 4 is devoted to proving that the Hermite–Hadamard-type inequality
(Theorem 2.10) obtained for generalized2-convex functionscharacterizegener-
alized2-convexity. The most important tool is the following characterization of
continuous,nongeneralized2-convex functions (Theorem 4.3):

THEOREM. Let (ω1, ω2) be a Chebyshev system on an intervalI, furthermore
f : I → R be a continuous function. Then, the following assertions are equivalent:

(i) f is not(ω1, ω2)-convex;
(ii) there exist elementsx < y of I such thatω < f on ]x, y[ whereω is the

generalized line determined by the properties

ω(x) = f(x) ω(y) = f(y);

(iii) there exist elementsx < p < y of I and a generalized lineω such thatω ≥ f
on [x, y], moreover

f(x) < ω(x) f(p) = ω(p) f(y) < ω(y);

(iv) there existsp ∈ I◦ such thatf is locally strictly (ω1, ω2)-concave atp, that
is, there exist elementsx < p < y of I such that, for allx < u < p < v < y,
the following inequality holds:∣∣∣∣∣∣

f(u) f(p) f(v)
ω1(u) ω1(p) ω1(v)
ω2(u) ω2(p) ω2(v)

∣∣∣∣∣∣ < 0.

The main results are presented in the subsequent three theorems (see Theo-
rem 4.5, Theorem 4.6 and Theorem 4.7). The first and the second one can be
considered as the left and right hand side of the Hermite–Hadamard-type inequal-
ity for generalized2-convex functions (Theorem 2.10); the third one corresponds
to the classical Jensen inequality.
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THEOREM. Let (ω1, ω2) be a Chebyshev system over an interval[a, b] such
that ω1 is positive on]a, b[, furthermoreρ : [a, b] → R be a positive integrable
function. Define, for all elementsx < y of [a, b], the functionsξ(x, y) andc(x, y)
by the formulae

ξ(x, y) :=
(

ω2

ω1

)−1(∫ y
x ω2ρ∫ y
x ω1ρ

)
, c(x, y) =

∫ y
x ω1ρ

ω1(ξ(x, y))
.

Then, a continuous functionf : [a, b] → R is generalized convex with respect to
(ω1, ω2) if and only if, for all elementsx < y of [a, b], it satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
≤
∫ y

x
fρ.

THEOREM. Let (ω1, ω2) be a Chebyshev system over an interval[a, b] such
that ω1 is positive on]a, b[, furthermoreρ : [a, b] → R be a positive integrable
function. Define, for all elementsx < y of [a, b], the functionsc1(x, y) andc2(x, y)
by the formulae

c1(x, y) =

∣∣∣∣ ∫ y
x ω1ρ ω1(y)∫ y
x ω2ρ ω2(y)

∣∣∣∣∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ , c2(x, y) =

∣∣∣∣ ω1(x)
∫ y
x ω1ρ

ω2(x)
∫ y
x ω2ρ

∣∣∣∣∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ .

Then, a continuous functionf : [a, b] → R is generalized convex with respect to
(ω1, ω2) if and only if, for all elementsx < y of [a, b], it satisfies the inequality∫ y

x
fρ ≤ c1(x, y)f(x) + c2(x, y)f(y).

THEOREM. Let (ω1, ω2) be a Chebyshev system onI, furthermoref : I → R
be a continuous function. Keeping the notations of the previous two theorems,f is
(ω1, ω2)-convex if and only if, for all elementsx < y of I, it satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
≤ c1(x, y)f(x) + c2(x, y)f(y).

These theorems together give an additional characterization of generalized2-
convexity (Corollary 4.8). Verifying analogous results in the general setting (or
even in the polynomial case) remains an open problem and may be the subject of
further researches.
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[LV79] I. B. Lacković and P. M. Vasíc, Notes on convex functions. V. Positive linear operators
and functions convex of ordern, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.
(1979), no. 634-677, 239–243.

[Mak79] D. M. Maksimovíc, A short proof of generalized Hadamard’s inequalities, Univ.
Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (1979), no. 634-677, 126–128.

[Mer99] M. Merkle,Remarks on Ostrowski’s and Hadamard’s inequality, Univ. Beograd. Publ.
Elektrotehn. Fak. Ser. Mat.10 (1999), 113–117.
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[Pál99] Zs. Ṕales,Strong Ḧolder and Minkowski inequalities for quasiarithmetic means, Acta
Sci. Math. (Szeged)65 (1999), no. 3-4, 493–503.
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