Bessenyei Milaly

Hermite—Hadamard-type inequalities
for generalized convex functions

(Ph.D. dissertation)
Supervisor: Dr. Pales Zsolt

UNIVERSITY OF DEBRECEN
Debrecen, Hungary, 2004






“Laus viventi Deo!”

Acknowledgements

First | thank my parents and my family for providing the possibility of suitable
education and peaceful background to my studies, my work and my life. | thank
them and also my friends for their frequent encouragement and support.

| wish to express my deep gratitude to my supervisax, BSOLT PALES for
the outstanding guidance and support during my PhD years and also till now. His
invaluable advice and excellent ideas exhaustively influenced both the contents
and the form of the present dissertation. | thank him for accepting me as a Ph.D.
student and conducting my researches.

| thank the leader of the Ph.D. schoolRDZOLTAN DAROCZY as well as [R.
LAszLO Losonczifor their confidence in me and providing me the opportunity
to study and do research work as a Ph.D. fellow. | thank them the kind support and
help they presented in various ways during my studies.

| also wish to express my gratitude tRDGYULA MAKSA, the leader of the
department, and all of my colleagues for the continuous encouragement over the
years and sharing their knowledge and love of the field of Analysis with me.

My special thanks go to RDREA GILANYIN E PAKOzDY for reviewing and
correcting the text of this dissertation. Without her valuable comments and advice
my co-author were Miss Prints...

At last, but not at least | express my thanks taE®R DEAK, EDIT KUN-
SZABONE DANCS, DR. JOzSEFSzILASI and all my former teachers who deeply
influenced my choice of profession for arousing my interest towards the beauty of
mathematics.






Contents

Introduction

Chapter 1. Polynomial convexity
1.1. Orthogonal polynomials and basic quadrature formulae
1.2. An approximation theorem
1.3. Hermite—Hadamard-type inequalities
1.4. Applications

Chapter 2. Generalizetdconvexity
2.1. Characterizations via generalized lines
2.2. Connection with standard convexity
2.3. Hermite—Hadamard-type inequalities
2.4. Applications

Chapter 3. Generalized convexity induced by Chebyshev systems
3.1. Characterizations and regularity properties
3.2. Moment spaces induced by Chebyshev systems
3.3. Hermite—Hadamard-type inequalities
3.4. An alternative approach in a particular case

Chapter 4. Characterizations via Hermite—Hadamard inequalities
4.1. Further properties of generalized lines
4.2. Hermite—Hadamard-type inequalities dnd, w2 )-convexity

Summary

Bibliography

12
14
21

25
25
34
36
38

41
41
44
46
51

57
57
60

65
73






Introduction

Let I be a real interval, that is, a nonempty, connected and bounded subset
of R. An n-dimensionalChebyshev systeon I consists of a set of real valued
continuous functionss, ..., w, and is determined by the property that each
points of I x R with distinct first coordinates can uniquely be interpolated by a
linear combination of the functions. More precisely, we have the following

DEFINITION. LetI C R be a real interval andvy,...,w, : I — R be
continuous functions. Denote the column vector whose componenis, are, wy,
in turn by w, that is, w := (w1,...,wy). We say thatw is a Chebyshev system
over/ if, for all elementse; < --- < z,, of I, the following inequality holds:

| w(z1) -+ w(z,) | >0

In fact, it suffices to assume that the determinant above is nonvanishing when-
ever the arguments,, . . ., x,, are pairwise distinct points of the domain. Indeed,
Bolzano’s theorem guarantees that its sign is constant if the arguments are sup-
posed to be in an increasing order, hence the componegnts. ,w, can always
be rearranged such thatfulfills the requirement of the definition. However, con-
sidering Chebyshev systems as vectors of functions instead of sets of functions is
widely accepted in the technical literature and also turns out to be very convenient
in our investigations.

Without claiming completeness, let us list some important and classical exam-
ples of Chebyshev systems. In each examyplis defined on an arbitrary C R
except for the last one whefeC| — 7, 7.

272
e polynomial systemw(z) := (1, z,...,2")
e exponential systemw(x) := (1,expz,...,expnx)
e hyperbolic systemw(z) := (1, cosh z,sinhz, ..., cosh nz, sinh nx)
e trigonometric systemw(x) := (1, cos z,sinx, . .., cos nz, sin nx).

We make no attempt here to present an exhaustive account of the theory of
Chebyshev systems, just mention that, motivated by some results of A. A. Markov,
the first systematic investigations of the geometric theory of Chebyshev systems
were done by M. G. Krein. However, let us note that Chebyshev systems play an
important role, sometimes indirectly, in numerous fields of mathematics, for exam-
ple, in the theory of approximation, numerical analysis and the theory of inequali-
ties. The books{S66] and [Kar68] contain a rich literature and bibliography of
the topics for the interested reader.



2 INTRODUCTION

The notion of convexity can also be extended applying Chebyshev systems:

DEFINITION. Letw = (wy,...,w,) be a Chebyshev system over the real
interval I. A functionf : I — R is said to begeneralized convex with respect to
w if, for all elementsry < --- < x,, of I, it satisfies the inequality

(_1)71 f(l’o) e f(xn) > 0.

w(zo) -+ w(wn) |~

There are other alternatives to express tha generalized convex with re-
spect tow, for example,f is generalizedw-convexor simply w-convex If the
underlyingn-dimensional Chebyshev system can uniquely be identified from the
context, we briefly say that is generalizech-convex

If wis the polynomial Chebyshev system, the definition leads to the notion of
higher-order monotonicity which was introduced and studied by T. Popoviciu in a
sequence of paperBdp36, Pop38b, Pop38a, Pop39b, Pop39a, Pop40c, Pop40e,
Pop40a, Pop40f, Pop40d, Pop40b, Pop4l, Pop42b, Pop42a, Popd2c, Pop43
A summary of these results can be found Rop44 and also in Kuc85]. For
the sake of unique terminology, throughout the dissertation Popoviciu's setting
is called polynomial convexity. That is, a functigh: I — R is said to be
polynomiallyn-convexif, for all elementszy < --- < x, of I, it satisfies the
inequality

flxo) ... flxn)
1 1
(_1)” i) c. Ip > 0.
xg. o xz'*l

Observe that polynomiallg-convex functions are exactly the “standard” convex
ones. The case, when the “generalized” convexity notion is induced by the spe-
cial two dimensional Chebyshev system(z) := 1 andws(x) := =z, is termed
standard setting@ndstandard convexityrespectively.

The integral average of any standard convex funcfion|a,b] — R can be
estimated from the midpoint and the endpoints of the domain as follows:

<a+b) /f o< )+f()

This is the well known Hadamard’s mequallty—l(e{id%]) or, as it is quoted for
historical reasons (se®L.85] for interesting remarks), the Hermite—Hadamard-
inequality.

The aim of the dissertation is to verify analogous inequalities for generalized
convex functions, that is, to give lower and upper estimations for the integral av-
erage of the function using certain base points of the domain. Of course, the base
points are supposed to depend only on the underlying Chebyshev system of the
induced convexity.
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For this purpose, we shall follow an inductive approach since it seems to have
more advantages than the deductive one. First of all, it makes the original motiva-
tions clear; on the other hand, it allows us to use the most suitable mathematical
tools. Hence sophisticated proofs that sometimes occur when using deductive ap-
proach can also be avoided.

CHAPTER 1 investigates the case of polynomial convexity. The base points of
the Hermite—Hadamard-type inequalities turn out to be the zeros of certain orthog-
onal polynomials. The main tools of the chapter are based on some methods of
numerical analysis, like Gauss quadrature formula and Hermite-interpolation. A
smoothing technique and two theorems of Popoviciu are also crucial.

In CHAPTER 2 we present Hermite—Hadamard-type inequalities for general-
ized 2-convex functions. The most important auxiliary result of the proof is a
characterization theorem which, in the standard setting, reduces to the well known
characterization properties of convex functions. Another theorem of the chap-
ter establishes a tight relationship between standard and generaleexity.

This result has important regularity consequences and is also essential in verifying
Hermite—Hadamard-type inequalities.

The general case is studied iHEPTER 3. The main results guarantee only
the existence and also the uniqueness of the base points of the Hermite—Hadamard-
type inequalities but offer no explicit formulae for determining them. The main
tool of the chapter is the Krein—Markov theory of moment spaces induced by
Chebyshev systems. In some special cases (when the dimension of the under-
lying Chebyshev systems are “small”), an elementary alternative approach is also
presented.

CHAPTER 4 is devoted to showing that, at least in the two dimensional case
and requiring weak regularity conditions, Hermite—Hadamard-type inequalities are
not merely the consequences of generalized convexity, but they also characterize
it.

Specializing the members of Chebyshev systems, several applications and ex-
amples are presented for concrete Hermite—Hadamard-type inequalities in both
the cases of polynomial convexity and generali2ezbnvexity. As a simple con-
sequence, the classical Hermite—Hadamard inequality is among the corollaries in
each cases, too.

The results of the dissertation can be found8r02, BP03, BP04, BPO5, BP
and Bes04. In the sequel, we present them without any further references to the
mentioned papers.






CHAPTER 1

Polynomial convexity

The main results of this chapter state Hermite—Hadamard-type inequalities for
polynomially convex functions. Let us recall that a functipn I — R is said to
be polynomiallyn-convexif, for all elementszy < --- < =, of I, it satisfies the
inequality

flxo) .o flzn)
1 1
(_1)” i) e In 2 0.
.’En-il . xn.—l
0 Ce n

In order to determine the base points and the coefficients of the inequalities,
Gauss-type quadrature formulae are applied. Then, using the remainder term of
the Hermite-interpolation, the main results follow immediately for “sufficiently
smooth” functions due to the next two theorems of Popoviciu:

THEOREM A. ([Kuc85, Theorem 1. p. 387]Assume thatf : I — R is
continuous and times differentiable on the interior df Then,f is polynomially
n-convex if and only iff ™) > 0 on the interior off.

THEOREMB. ([Kuc85, Theorem 1. p. 391JAssume thaf : I — R is poly-
nomiallyn-convex anch > 2. Then,f is (n — 2) times differentiable ang("—2)
is continuous on the interior af.

To drop the regularity assumptions, a smoothing technique is developed that
guarantees the approximation of polynomially convex functions with smooth poly-
nomially convex ones.

1.1. Orthogonal polynomials and basic quadrature formulae

In what follows, p denotes a positive, locally integrable function (shortly:
weight functiofon an intervall. The polynomials” and@ are said to berthog-
onal on[a, b] C I with respect to the weight functignor simply p-orthogonal on
[a, ] if

b
(P.Q), = [ Pap=o.

5



6 CHAPTER 1. POLYNOMIAL CONVEXITY

A system of polynomials is called@orthogonal polynomial system ém, b] C I
if each member of the system jsorthogonal to the others da, b]. Define the
moment®f p by the formulae

b
i ::/ ¥ p(x)da (k=0,1,2,...).

Then, then!” degree member of theorthogonal polynomial system da, b] has
the following representation via the momentspof

I R (|
O Hn
A R 2

Clearly, it suffices to show thab, is p-orthogonal to the special polynomials
1,x,...,2" 1. Indeed, fork = 1,...,n, the first and thék + 1)** columns of
the determinantP, (z), z*~1), are linearly dependent according to the definition
of the moments.

In fact, the moments and the orthogonal polynomials depend heavily on the
interval[a, b]. Therefore, we use the notiops,(, ;) and P, 5 instead ofy;, and
P,, above when we want to or have to emphasize the dependence on the underlying
interval.

Throughout this chapter, the following property of the zeros of orthogonal
polynomials plays a key role (se84eg39). Let P, denote ther'” degree member
of the p-orthogonal polynomial system da, b]. Then,P,, hasn pairwise distinct
zerosty < --- < &, inja, bl

Let us consider the following

b n
(L.1) [t = Yate
a k=1
b n
(1.2) [ 1o = ar@+Y afe)
a k=1
b n
(13) [ 10 = Y ase)+ s
a k=1
b n
(1.4) [ t0 = af@+ Y af@)+ i)
a k=1

Gauss-type quadrature formulae where the coefficients and the base points are to
be determined so that (1.1), (1.2), (1.3) and (1.4) be exact yhe@a polynomial

of degree at mostn — 1, 2n, 2n and2n + 1, respectively. The subsequent four
theorems investigate these cases.
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THEOREM 1.1. Let P, be then'* degree member of the orthogonal polyno-
mial system otfa, b] with respect to the weight functign Then(1.1)is exact for

polynomialsf of degree at mostn — 1 if and only if&y, ..., &, are the zeros of
P, and

S 160
15 cp = / - x)dx.
(-9 S A AT A
Furthermore(;, . .., &, are pairwise distinct elements pf, b[, andc;, > 0 for all
k=1,...,n

This theorem follows easily from well known results in numerical analysis (see
[HH94], [Joh6q, [Szeg39). For the sake of completeness, we provide a proof.

PROOF First assume thdy, . .., &, are the zeros of the polynomi&l, and,
forall k = 1,...,n, denote the primitive Lagrange-interpolation polynomials by
Ly : [a,b] — R. That s,

P,(x) .
Li(z) := { (x — &) P (&) ff T 7
1 if x = &k

If Q is a polynomial of degree at mo3t — 1, then, using Euclidian algorithm,
Q@ can be written in the fornd) = PP, + R wheredeg P,deg R < n — 1. The
inequalitydeg P < n — 1 implies thep-orthogonality ofP and P,;:

b
/ PP,p=0.

On the other handdeg R < n — 1 yields thatR is equal to its Lagrange-
interpolation polynomial:

R=Y R(&)Ly
k=1

Therefore, considering the definition of the coefficients . ., ¢, in formula (1.5),
we obtain that

/apr

[ PRt [ Ro= ZR& [ 1

= chR (k) = Z K (P(€k) Pa(&k) + R(&)) chcz (€x).
k=1
That is, the quadrature formula (1.1) is exact for polynomials of degree at most
2n — 1.
Conversely, assume that (1.1) is exact for polynomials of degree atmogt
Define the polynomial) by the formulaQ(x) := (z — &) -+ (z — &,) and letP
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be a polynomial of degree at mast- 1. Then,deg PQ < 2n — 1 thus

b
/ PQp=c1P(6)QE) + - + e P(E)Q(Er) = 0.

ThereforeQ is p-orthogonal toP. The uniqueness d?, implies thatP, = a,Q,
and&y, ..., &, are the zeros of,. Furthermore, (1.1) is exact if we substitute
f = Ly andf := L?, respectively. The first substitution gives (1.5), while the
second one shows the nonnegativitycpf For further details, consult the book
[Szeg39p. 44]. a

THEOREM 1.2. Let P, be then'* degree member of the orthogonal polyno-
mial system ona, b] with respect to the weight functign,(z) := (z — a)p(x).
Then(1.2)is exact for polynomialg of degree at mosin if and only iféy, ..., &,
are the zeros of,,, and

1 b,
(16) ¢ = P,%(a)/a Pn ("Il)p(l')dl',
1 b (z—a)P,(x)
1.7 Ccr = z)dx.
a.7) ’ gk—a/a &) PiE)”"
Furthermore(y, .. ., &, are pairwise distinct elements ff, b, andc; > 0 for all
k=0,...,n.

PROOF Assume that the quadrature formula (1.2) is exact for polynomials of
degree at mosin. If P is a polynomial of degree at moat — 1, then

b b
/ Ppg = / (.CU - Q)P(x)p($)d$ = Cl(fl - CL)P(gl) +e T+ cn(gn - a)P(gn)
Applying Theorem 1.1 to the weight functign and the coefficients

Cake := k(& — a),

we getthaty, ..., &, are the zeros aP, and, forallk = 1, ..., n, the coefficients
cq;k Can be computed using formula (1.5). Therefore,

o b P,(x) o — b (z —a)Py(x) \de
== | ot = [ g me o
Substitutingf := P? into (1.1), we obtain that

S L
o= —5—~ Pp.
Pﬁ(a)/a !

Thus (1.6) and (1.7) are valid, amgl > 0 for k = 0,1, ..., n.
Conversely, assume thét, . . . , &, are the zeros of the orthogonal polynomial
P,, and the coefficientsy,...,c, are given by the formula (1.7). Define the
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coefficientcy by ¢y = f;p —(c1 4+ -+ 4+ ¢y). If Pis a polynomial of degree
at most2n, then there exists a polynomi@l with deg @ < 2n — 1 such that

P(z) = (z — a)Q(x) + P(a).

Indeed, the polynomiaP(x) — P(a) vanishes at the point = a hence it is
divisible by (z — a). Applying Theorem 1.1 again to the weight function

b
/ Qpa = Ca;lQ(gl) +---+ Ca;nQ(fn)

holds. Thus, using the definition af, the representation of the polynomialand
the quadrature formula above, we have that

b b
/ P(x)p(x)dx = / ((a: —a)Q(x) + P(a))p(az)dx
- Z ck(&e — a)Q (&) + Z P(a)cy
k=
= ¢P(a +ch (& — a)Q(&k) + P(a))

= cP(a) + Z crP (&),
which yields that the quadrature formula (1.2) is exact for polynomials of degree
at most2n. Therefore, substituting := P? into (1.2), we get formula (1.6). [

THEOREM 1.3. Let P, be then'* degree member of the orthogonal polyno-
mial system oria, b] with respect to the weight functigt(z) := (b — z)p(x).

Then(1.3)is exact for polynomialg of degree at mosin if and only iféy, ..., &,
are the zeros oP,,, and
1 b (b —z)Py(z)

1.8 cp = / x)dr,

(1.8) g b— fk (x — &) P (&c)p( )

(1.9) Cn1l = P2 / Pz

Furthermore(s, . .., &, are pairwise distinct elements pf, b[, andc;, > 0 for all
k=1,...,n+1.

HINT. Applying a similar argument to the previous one to the weight function
pb, we obtain the statement of the theorem. O
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THEOREM 1.4. Let P, be then'® degree member of the orthogonal polyno-
mial system offiz, b] with respect to the weight functigsj. Then(1.4)is exact for
polynomialsf of degree at mostn + 1 if and only ify,. .., &, are the zeros of
P, and

1 b
110« = Geaps / (b— 2)P2(2)p(x)da,

B 1 b (b—xz)(x — a)P,(x)
I = el Arrar s a2
1 b
A1) i = Goam / (2 — a) P2()p(a)da.
Furthermore(y, . . ., &, are pairwise distinct elements f, b, andc;, > 0 for all
k=0,....,n+1.

PROOFE Assume that the quadrature formula (1.4) is exact for polynomials of
degree at mosin + 1. If P is a polynomial of degree at moat — 1, then

b b
[ Ph = [ -2 -aP@)s
= ca(b=&)(& —a)P(&) + -+ cn(b— ) (€ — a) P(&n).
Applying Theorem 1.1 to the weight functigff and the coefficients

Capsk = Ck(b— &) (& — a),

we getthaty, ..., &, are the zeros of,, and, for allk = 1, ..., n, the coefficients
Ca,p:1 CaN be computed using formula (1.5). Therefore,

b
(b — &) (Ex —a) = /( Po(@) b(z)da

P A
B b (b—z)(x —a)P,(x)
= [ e s

Substitutingf := (b — ) P2(z) andf := (x — a)P2(z) into (1.1), we obtain that

b
“ = Goap [ - DP @),

b
= G=apE ] @ - PR @e

Thus (1.10), (1.11) and (1.12) are valid, furthermejez> Ofork =0,...,n+ 1.
Conversely, assume thé, ..., &, are the zeros oF,, and the coefficients
c1,...,cq are given by the formula (1.11). Define the coefficientendc,, 1 by
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the equations

b n
[o-ap@ir = ab-0+Y ab-g)
a k=1

b
/ (x —a)p(x)dr = ch(fk —a)+ cpy1(b—a).

k=1
If P is a polynomial of degree at mo3t + 1, then there exists a polynomiél
with deg Q < 2n — 1 such that

(b—a)P(x)=(b—z)(x—a)Q(z) + (x —a)P(b) + (b — x)P(a).

Indeed, the polynomigh — a)P(z) — (z — a)P(b) — (b — =) P(a) is divisible by
(b — x)(x — a) sincex = a andz = b are its zeros. Applying Theorem 1.1 again,

b
/ QPZ = Ca,b;lQ(gl) + -+ Ca,b;nQ(&n)

holds. Thus, using the definition ef andc,, 1, the representation of the polyno-
mial P and the quadrature formula above, we have that

—a/P

((b z)(r —a)Q(x) + (x —a)P(b) + (b— :):)P(a))p(x)dx

k(b — &) (& — a)Q(&r)

M:N

ol

=1

b b
+P(b) / (x —a)p(x)dz + P(a) / (b — z)p(z)dx

= > crlb— &) (& — )Q(&)

k=1

+co(b—a)P +chb &) P

+37 (€ — )P(b) + copa (b — a) P(D)
k=1

= cx((0— &) (& — a)Q(&) + (& — a) P(b) + (b — &) P(a))

k=1
+co(b —a)P(a )+ cnt1(b —a) P(b)

= —|—ZCk —(I & +Cn+1(b_a)P(b)7
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which yields that the quadrature formula (1.4) is exact for polynomials of degree
at most2n + 1. Therefore, substituting := (b—z) P2(x) andf := (z —a) P2(z)
into (1.4), formulae (1.10) and (1.12) follow. a

Let f : [a,b] — R be a differentiable functionyy,...,x, be pairwise dis-
tinct elements ofa, b], and1 < r < n be a fixed integer. Denote the Hermite
interpolation polynomial by that satisfies the following conditions:

H(zy) = flzg) (k=1,...,n)
H’(wk) = f/(l'k) (k:1,...,7“).

We recall thatdeg H = n + r — 1. From a well known result, (se&lH94, Sec.
5.3, pp. 230-231]), for alt: € [a, b] there exist® such that

wp ()wy ()

(n+m7)! ARRO}

(1.13) fla) — H(z) =

where

wi(z) = (x — 1)+ (x — zp).

1.2. An approximation theorem

It is well known that there exists a functianwhich possesses the following
properties:
() v: R — Ry isC>,Ii. e, itis infinitely many times differentiable;
(i) suppy C [-1,1];
(i) J[ro=1.
Using ¢, one can define the functign for all ¢ > 0 by the formula

o) =20(2)  wem)

Then, as it can easily be checked,satisfies the following conditions:
(") @e: R — Ry isC>;
(”1) Supp e C [*575];
(i) [z e =1.
Let I C R be a nonempty open interval,: I — R be a continuous function,
and choose > 0. Denote the convolution of andp. by f., that is

fe(z) = /Rf(y)@s(w —y)dy  (z€R)

where f(y) = f(y) if y € I, otherwisef(y) = 0. Let us recall, thatf. — f
uniformly ase — 0 on each compact subinterval 6f and f. is infinitely many
times differentiable orR. These important results can be found for example in
[Zei86, p. 549].
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THEOREM 1.5. Let] C R be an open intervalf : I — R be a polynomi-
ally n-convex continuous function. Then, for all compact subintervaly C I,
there exists a sequence of polynomialhgonvex and®> functions( f;) which
converges uniformly tg on [a, b].

PROOF Choose:, b € I andey > 0 such that the inclusiofu—e¢, b+¢eo] C I
hold. We show that the function f : [a,b] — R defined by the formula

T f(x) = f(z—¢)

is polynomiallyn-convex on[a, b] for 0 < e < gg. Leta <z < -+- <z, < b
andk < n — 1 be fixed. By induction, we are going to verify the identity

Tef(xO)
Zo

(1.14) b1

If & = 1, then this equation obviously holds. Assume, for a fixed positive integer

Tef(xn)

Tsf(xO)
1
Trog— €

(zo — )1
g

n—1
)

Taf(xn)

k <n — 2, that (1.14) remains true. The binomial theorem implies the identity

ok = (§>a’“ + (T)akl(x —e) -+ (:) (x —e)™.

Thatis,(z—e¢)" is the linear combination of the elemeiits: —¢, ... ., (x—¢)* and
z*. Therefore, adding the adequate linear combination otHe. .., (k + 1)
rows to the(k + 2)"? row, we arrive at the equation

Tef(xO)
1

Trog— €

(330 _ g)k—l
g

k+1
Lo

n—1
Lo

7 f(zn)
1

Ty — €

T5f<$0)
1

Trog — €&

(w0 — )
(zo — €)*

k+1
Lo

k-1

n—1
Lo

e f(2n)
1

Ty — €

Hence formula (1.14) holds for all fixed positikewheneverl < k£ < n — 1.
The particular cask = n — 1 gives the polynomiak-convexity ofr. f. Applying
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integral transformation and the previous result, we get that

fe(fUO)
1

(1| o

fa(xn)

n—1
Lo

f (t)sos(lxn —1)
Tn dt
:cgz—l
s)
Pe(s)ds
pe(s)ds > 0,

which shows the polynomial-convexity of f. on[a, b] for 0 < e < &.
To complete the proof, choose a positive integgsuch that the relatio% <

go hold. If we defines;, and f;, by ¢, :=

ﬁ and fy, := f., for k € N, then

0 < e < g0 thus(f)32, satisfies the requirements of the theorem. O

1.3. Hermite—Hadamard-type inequalities

In the sequel, we shall need two additional auxiliary results. The firs one
investigates the convergence properties of the zeros of orthogonal polynomials.

LEMMA 1.6. Letp be a weight function ofu, b] furthermore(a;) be strictly

monotone decreasingp;) be strictly monotone increasing sequences such that

a; — a, bj — banda; < b;. Denote the zeros df,,,.; by &1,5, . .., &n;; Where
P,.;is them!" degree member of tr)ﬂ[ajﬁj]—orthogonal polynomial system on

laj,b;], and denote the zeros &f,, by ¢, ..

.,&n Where P, is them!” degree

member of the-orthogonal polynomial system da, b]. Then,

lim &.; = &
j—oo

(k=1,...,n).
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PROOF. Observe first that the mappini@, b) — 1[4, iS continuous, there-
fore wpija; ;) = Hisfap) NENCEP,; — Py pointwise according to the representa-
tion of orthogonal polynomials. Take> 0 such that

[6k — &, &k + e[Cla, b

& — 6,8 +e[N§ —€,6 +€[=0 (k#1, k,le{l,...,m}).
The polynomialP,, changes its sign ol§;. — ¢, & + €[ since it is of degree: and
it hasm pairwise distinct zeros; therefore, due to the pointwise convergénge,
also changes its sign on the same interval up to an index. That is, for sufficiently
largej, §k.j €6k — &, &k + €l O

The other auxiliary result investigates the one-sided limits of polynomially
convex functions at the endpoints of the domain. Let us note that its first assertion
involves, in fact, two cases according to the parity of the convexity.

LEMMA 1.7. Let f : [a,b] — R be a polynomiallyz-convex function. Then,

(i) (—1)"f(a) > limsup,_,4o(~1)"f(1);
(i) f(b) > limsup, ;o f(2)-
PrROOF It suffices to restrict the investigations to the even case of assertion

() only since the proofs of the other ones are completely the same. For the sake of
brevity, we shall use the notatiofl () := limsup,_,,, o f(t). Take the elements

xg i =a < x =t < -+ < x, 0f [a,b]. Then, the (even order) polynomial
convexity of f implies
fla) f(t) f(z2) f(zn)
1 1 1 1
a t T9 Ty > 0.
anfl tnfl xg—l xzfl

Therefore, taking the limsup @as— a + 0, we obtain that

The adjoint determinants of the elemerft&es), . ..

fla) fila) f(z2) f(@n)
1 1 1 1
a a €T Tn ZO
anfl anfl x;z.—l ‘I,Z;l

, f(x,) In the first row are

equal to zero since their first and second columns coincide; on the other hand,
f(a) and f1(a) have the same (positive) Vandermonde-type adjoint determinant.
Hence, applying the expansion theorem on the first row, we obtain the desired
inequality

f(a) = fi(a) = 0.
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The main results concern the cases of odd and even order polynomial convex-
ity separately in the subsequent two theorems.

THEOREM 1.8. Letp : [a,b] — R be a positive integrable function. Denote

the zeros of?,, by ¢, . .., &, whereP,, is them!" degree member of the orthog-
onal polynomial system di, b] with respect to the weight functida: — a)p(z),
and denote the zeros 6f,, by n1,. .., n, whereQ,, is them!" degree member
of the orthogonal polynomial system @n b] with respect to the weight function
(b—x)p(x). Define the coefficientsy, . .., au,, @ndjy, . . ., Bm+1 by the formulae
= s [ Pi@te
oy = P%(a)a m\Z)p\x)ax,
1 b (z —a)P,(z)
o = xr)dx
’ €k—a/a (f—fk)Pé@(fk)p( )
and
L[ (b—2)Qm(x)
Or = / x)dzr,
g b*ﬁk (z —me) @, (ﬁkz)p( )

Pms1 = Q2 /Q2

If a functionf : [a,b] — R is polynomially(2m + 1)-convex, then it satisfies the
following Hermite—Hadamard-type inequality

m b m
cof(@)+ Yt (©) < [ Fp <3 A) + Busaf(0)
k=1 @ k=1

PROOF. First assume thaf is (2m + 1) times differentiable. Then, accord-
ing to Theorem A,f(?"+1) > ( on]a,b[. Let H be the Hermite interpolation
polynomial determined by the conditions

H(a) = [f(a)
H(&) = f(&)
H'(&) = ['(&)
By the remainder term (1.13) of the Hermite interpolationg ifs an arbitrary
element ofla, b], then there exist8 €]a, b[ such that

r—a)(r—§&) - (x—&n)?

That is, fp > Hp on|a, b] due to the nonnegativity of*™+1) and the positivity
of p. On the other hand{ is of degre€m, therefore Theorem 1.2 yields that

/fp>/ Hp = agH(a +Zangk = a0fa) + 3 anf (&)

k=1
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For the general case, I¢tbe an arbitrary polynomiall{2m + 1)-convex func-
tion. Without loss of generality we may assume that> 1; in this case,f is
continuous (see Theorem B). Let;) and(b;) be sequences fulfilling the require-
ments of Lemma 1.6. According to Theorem 1.5, there exists a sequel€g, of
polynomially (2m + 1)-convex functiong f;.;) such thatf;.; — f uniformly on
laj,b;] asi — oo. Denote the zeros aP,,.; by 1.5, . .., &m;; WhereP,, ; is the
m'" degree member of the orthogonal polynomial systenugrb;] with respect
to the weight functior(z — a)p(x). Define the coefficientay.;, . . . , ayy,.; analo-
gously toay, . . ., oy, With the help ofP,,;;. Then,&;.; — &, due to Lemma 1.6,
and hencey.; — o asj — oo. Applying the previous step of the proof on the
smooth functiong f;.;), it follows that

m bj
aosj fij(aj) + Zak;jfi;j(sz;j) < / fizip-
k=1 a;
Taking the limitsi — oo and thenj — oo, we get the inequality

m b
co(lming 1) + D ewr(e < [ 1o
This, together with Lemma 1.7, gives the left hand side inequality to be proved.
The proof of the right hand side inequality is analogous, therefore it is omitted.

The second main result offers Hermite—Hadamard-type inequalities for even-
order polynomially convex functions. In this case, the symmetrical structure dis-
appears: the lower estimation involves none of the endpoints, while the upper
estimation involves both of them.

THEOREM 1.9. Letp : [a,b] — R be a positive integrable function. Denote
the zeros ofP,, by &1,...,&, where P, is them!" degree member of the or-
thogonal polynomial system dm, b] with respect to the weight functigriz), and
denote the zeros @,,,_1 by n1,. .., 7m_1 whereQ,,,_1 is the(m — 1) degree
member of the orthogonal polynomial system[@rb] with respect to the weight
function(b— x)(x — a)p(x). Define the coefficientsy, ..., o, andfo, . .., Bm+1

by the formulae b
Qay :Z/a @_?Z:%p(x)d:c
and
b= aew /ab“—w) 2y (@)p(e)da,
: — _
(b—ﬁk)l(sz _a)/a s (a:x—)(sk) ZQI;;)(x)p(x)dx’
1

’ 2
bt = Gaor ), @ @),

m—1

Br =
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If a function f : [a,b] — R is polynomially(2m)-convex, then it satisfies the
following Hermite—Hadamard-type inequality

m—1

m b
S auf(€) < [ fp < Bof@)+ 3 et ) + B f ().
k=1 @ k=1

PROOF. First assume that is n = 2m times differentiable. Theri?™) > 0
onJa, b| according to Theorem B. Consider the Hermite interpolation polynomial
H that interpolates the functiofiin the zeros ofP,, in the following manner:

H(&) = f(&)
H'(&) = f'(&)-

By the remainder term (1.13) of the Hermite interpolationg ifs an arbitrary
element ofla, b], then there exist8 €]a, b[ such that

(z—&)% - (z — &)

)] Fem(0).

fw) ~ H(z) =

Hencefp > Hp on|[a, b] due to the nonnegativity of>™) and the positivity of.
On the other handH is of degree2m — 1, therefore Theorem 1.1 yields the left
hand side of the inequality to be proved:

b b m m
/ pr/ Hp="Y o H(&) =D arf(&).
a a k=1 k=1

Now consider the Hermite interpolation polynomidlthat interpolates the func-
tion f in the zeros of),, 1 and in the endpoints of the domain in the following
way:

H(a) = f(a)
H(n) = flme)
H'(ng) = f'(m)

H(®) = f(b).

By the remainder term (1.13) of the Hermite interpolationg ifs an arbitrary
element ofja, b], then there exist8 €]a, b[ such that

(z—a)(z—b)(x—m)* - (z - 77m—1)2f(2m)(9)‘

The factors of the right hand side are nonnegative except for the facterd)
which is negative hencgp < Hp. On the other handd is of degree2m — 1,
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therefore Theorem 1.4 yields the right hand side inequality to be proved:
b b m—1
[t [Ho = pott@)+ 3 et + 6aH ()
a a k=1
m—1

= Bof(a)+ Y Brf(m) + Bmf(b).
k=1

From this point, an analogous argument to the corresponding part of the previous
proof gives the statement of the theorem without any differentiability assumptions
on the functionf. a

Specializing the weight functiop = 1, the roots of the inequalities can be
obtained as convex combinations of the endpoints of the domain. The coefficients
of the convex combinations are the zeros of certain orthogonal polynomials on
[0,1] in both cases. Observe that interchanging the role of the endpoints in any
side of the inequality concerning the odd order case, we obtain the other side of
the inequality.

THEOREML1.10. Let, form > 0, the polynomialP,, be defined by the formula

1 1
L3 s
o | e
Pm(x) = . . mj'—
: 1 o
™ Tm T amad
Then,P,, hasm pairwise distinct zerog, . .., A,, in |0, 1]. Define the coefficients
QQy ey Oy by
1 L
= —— P d
1 [t 2Py (x)
ap = €.

A Jo (@ = M) B (M)
If a functionf : [a,b] — R is polynomially(2m + 1)-convex, then it satisfies the
following Hermite—Hadamard-type inequality

cof(@)+ Y- anf (1= Ma+ ) < 2 [ fla)da
k=1 @

< Z akf(/\ka + (1 — )\k)b) + Oé()f(b).
k=1
PROOF Apply Theorem 1.8 in the particular setting when= 0, b := 1 and
the weight function i = 1. Then, as simple calculations shal#, is exactly the
m!" degree member of the orthogonal polynomial systerfDoh] with respect to
the weight functiorp(z) = z (see the beginning of this chapter). Therefadpg,
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hasm pairwise distinct zero < A\ < --- < A\, < 1, indeed. Moreover, the
coefficientsay, . . . , a,, have the form above. Define the functiéh: [0,1] — R
by the formula

F(t):= f((1 —t)a+tb).

It is easy to check thak’ is polynomially (2m + 1)-convex on the intervdD, 1].
Hence, applying Theorem 1.8 and the previous observations, it follows that

/IF(t)dt > aoF(O)+§:akF()\k)
0 k=1

= aof(a) + Zakf((l — Ak)a + Ab).

k=1
On the other hand, to complete the proof of the left hand side inequality, observe

that
1 b 1
b_a/a f(:r)dx:/o F(t)dt.

For verifying the right hand side one, define the function [a,b] — R by the
formula

p(x) = —f(a+b— ).
Then,p is polynomially(2m+1)-convex ora, b]. The previous inequality applied
on ¢ gives the upper estimation of the Hermite—Hadamard-type inequality.for
O

THEOREM 1.11. Let, form > 1, the polynomials?,, and Q,,_1 be defined
by the formulae

11 %
1
x = PEEEEY —_
Pm<$) = . 2 . mfrl )
mo 1 S
™ mr I
1 1
2-3 m(m+1)
z 37 ( +1)1( T2)
. m m
mel(l') = . .
m—1 1 ... 71
(m+1)(m+2) (2m—1)2m
Then,P,, hasm pairwise distinct zerog, ..., A, in]0,1[andQ,,—1 hasm — 1
pairwise distinct zerog1, . . ., um—1 in J0, 1], respectively. Define the coefficients

at,...,apmandfy, ..., Bm by

L ! P (x) "
o "/o @A) PO
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and
1
b= G fy O
B 1 b a(l = 2)Qp-1(2) .
Po 1= (I—Mk)uk/ (@ — px) @y l(uk)d’
1 1
ﬁm = 7271_1(1)/0 ng%l(x)da?

If a function f : [a,b] — R is polynomially(2m)-convex, then it satisfies the
following Hermite—Hadamard-type inequality

Zakf 1 — )\k)a + )\kb
k=1

< Bof(a) + Z Bif (1= px)a + pxb) + B f (b).
k=1

PROOF Substituten := 0, b := 1 andp = 1 into Theorem 1.9. Then?,,
is exactly them!* degree member of the orthogonal polynomial system on the
interval [0, 1] with respect to the weight functiop(xz) = 1; similarly, Q,,—1 is
the (m — 1)t degree member of the orthogonal polynomial system on the interval
[0, 1] with respect to the weight functignz) = (1 — x)xz. Therefore,,, hasm
pairwise distinct zero8 < \; < -+ < A\, < 1 and@,,,—1 hasm — 1 pairwise
distinct zero) < pu1 < -+ < um-1 < 1, indeed. Moreover, the coefficients
ai,...,an andpfy, ..., G, have the form above. To complete the proof, apply
Theorem 1.9 on the functioR : [0, 1] — R defined by the formula

F(t) == f((1 —t)a+tb).

1.4. Applications

In the particular setting whem = 1, Theorem 1.10 reduces to the classical
Hermite—Hadamard inequality:

COROLLARY 1.12. If f : [a,b] — R is a polynomially2-convex (i.e. convex)
function, then the following inequalities hold

1(52) ¢ ks froe 2050

In the subsequent corollaries we present Hermite—Hadamard-type inequali-
ties in those cases when the zeros of the polynomials in Theorem 1.10 and Theo-
rem 1.11 can explicitly be computed.
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COROLLARY 1.13.If f : [a,b] — R is a polynomially3-convex function, then
the following inequalities hold

@+ () < bia/bfmdx <3 (2 + o,

COROLLARY 1.14.If f : [a,b] — Ris a polynomiallyt-convex function, then
the following inequalities hold

<3+\f 3—\/§b> f<3 V3 3+\/§b>

f 6 6

iajfmmxgé (a) + f(a+b)+éﬂw.

COROLLARY 1.15.If f : [a,b] — Ris a polynomially5-convex function, then
the following inequalities hold

1 16+v%f<4+v% vﬁ>

gfl@) + — 10 10

_ _ b
10 \/€f<4 V6, 6+f>sbfa/f<x>dx

36 10 10
. 16—\@f<6+\/6 f)
36 10 10
16 + /6 6—v% 4+vﬁ
+ 36 *f< 10 10 >'*9fw)

In some other cases analogous statements can be formulated applying Theo-
rem 1.11. For simplicity, instead of writing down these corollaries explicitly, we
shall present a list which contains the zero$f(denoted by\;), and the coeffi-
cientsay, for the left hand side inequality furthermore the zero§)gf(denoted by
1), and the coefficientsy, for the right hand side inequality, respectively.

Casen =6
The zeros off;:

5—v15 1  5++15
0 72 10 7
the corresponding coefficients:

18 97 18
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The zeros of)s:

5-vV5  5+45
10 10
the corresponding coefficients:
1 5 )
Casen =8
The zeros of?;:
1 5254+ 7030 1 525 — 704/30
2 70 T2 70 ’
1 525 —70v/30 1 525 + 70v/30
2t 70 g 70 ’
the corresponding coefficients:
1 V30 1 V30 1 V30 1 30
1T it 1t 1T

The zeros of)s:

1 V21 1 1 V21
2 147 2 271
the corresponding coefficients:
1 49 16 49 1
20" 180" 457 1807 20
Casen =10
The zeros offs:

1 245 + 1470 1 245 — 144/70

2 42 T2 42 ’
11 n 245 -14v70 1 n V245 + 1470
27 2 42 T2 42 ’

the corresponding coefficients:
322 — 1370 322+ 1370 64 322+ 1370 322 — 1370

1800 ’ 1800 T 2257 1800 ’ 1800
The zeros of)4:

1 147 + 427 1 147 — 4247
2 42 2 42 ’
1 147 — 427 1 14T+ 427
2" 42 gt 42 :

the corresponding coefficients:

1 14 -7 14+V7 14+V7 14-7 1
30’ 60 60 ' ’

60 60 30°



24 CHAPTER 1. POLYNOMIAL CONVEXITY

Casen = 12 (right hand side inequality)
The zeros of)s:

1 495 +66v15 1 /495 — 6615

2 66 T2 66 ’
11 495 —66v15 1 + V495 + 6615
27 2 66 T2 66 ’

the corresponding coefficients:
1 124 —7v/15 124+ 715 128

42’ 700 700 525
124 + 715 124 — 715 1
700 700 1 42"

During the investigations of the higher—order cases above, we can use the sym-
metry of the zeros of the orthogonal polynomials with respetyfy and therefore
the calculations lead to solving linear or quadratic equations. The first case where
“casus irreducibilis” appears is = 7; similarly, this is the reason for presenting
only the right hand side inequality for polynomiall-convex functions.



CHAPTER 2

Generalized2-convexity

In terms of geometry, the Chebyshev property of a two dimensional system can
equivalently be formulated: the linear combinations of the members of the system
(shortly: generalized linesare continuous furthermore any two points of the plain
with distinct first coordinates can be connected by a unique generalized line. That
is, generalized lines have the most important properties of affine functions. These
properties turn out to be so strong that most of the classical results of standard
convexity can be generalized for this setting.

First we investigate some basic properties of generalized lines of two di-
mensional Chebyshev systems. Then the most important tool of the chapter,
a characterization theorem is proved for generali2embnvex functions. Two
consequences of this theorem, namely the existence of generalized support lines
and the property of generalized chords are crucial to verify Hermite—Hadamard-
type inequalities. Another result states a tight connection between standard and
(w1, wsy)-convexity, and also guarantees the integrability.of, ws )-convex func-
tions. Some classical results of the theory of convex functions, like their represen-
tation and stability are also generalized for this setting.

2.1. Characterizations via generalized lines

Let us recall thatw;,w2) is said to be &hebyshev systeaver an intervall
if w1, wsy : I — R are continuous functions and, for all elements y of I,

wi(z) wi(y)
wa(z) wa(y)

Some concrete examples on Chebyshev systems are presented in the last section
of the chapter. Given a Chebyshev system w,), a functionf : I — R is called
generalized convex with respect(to;, wo) or shortly:generalized®-convexf, for

all elementse < y < z of I, it satisfies the inequality

fx)  fly)  f(2)

wi(z) wiy) wi(z) | =0.

wa(x) way) wa(z)
Clearly, in the standard setting this definition reduces to the notion of (ordinary)
convexity. Let(w;,w2) be a Chebyshev system on an interfjgdind denote the set
of all linear combinations of the functiong andws by £(w1,ws). We say that a

> 0.

25
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functionw : I — R is ageneralized linef it belongs to the linear hull (wq, ws).
The properties of generalized lines play the key role in our further investigations;
first we need the following simple but useful ones.

LEMMA 2.1. Let(w;,w2) be a Chebyshev system over an intedfvalhen, two
different generalized lines éf(w;, w2) have at most one common point; moreover,
if two different generalized lines have the same value at sprae/°, then the
difference of the lines is positive on one side @fhile negative on the other side
of £&. In particular, w; andws have at most one zero; moreoveryif (resp.,ws)
vanishes at somge [°, thenw; is positive on one side gfwhile negative on the
other.

PROOF Due to the linear structure df(w;,w2), without loss of generality
we may assume that one of the lines is the constant zero line. Then, the other
generalized linev has the representationv; + Sws, with a? 4+ 32 > 0.

The first assertion of the theorem is equivalent to the propertyuhzds at
most one zero. To show this, assume indirectly th@!) andw(n) equal zero for

& # n; that is,
aw(§) + Pwa(§) = 0
awi(n) + Bwa(n) = 0.

By the Chebyshev property ¢f1,w2), the base determinant of the system is non-
vanishing, therefore the system has only trivial solutions 0 and = 0 which
contradicts the property? + 52 > 0.

An equivalent formulation of the second assertion is the following(§f) = 0
for some interior poing, thenw > 0 on one side of while w < 0 on the other.
If this is not true, then, according to the previous result and Bolzano’s theorem,
w is strictly positive (or negative) on both sides&fFor simplicity, assume that
w(t) > 0fort # £. Define the generalized line* by w* := —fw; + aws. Then,
(w,w*) is also a Chebyshev systemzif< y are elements of, then

w(z)  w(é) ‘ a B ‘ wi(z) wi(y)
w*(z) W (y) = | | waz) wa(y)

_ wi(z)  wi(y)

= (QQ + ﬂQ) w;(x) w;(y) ‘ > 0.

Therefore, taking the elements< £ < y of I, we arrive at the inequalities

w(z) W (€)
W€ W) | et

which yields the contradiction that"(¢) is simultaneously positive and negative.
For the last assertion, notice that, w, and the constant zero functions are
special generalized lines and apply the previous part of the theorem. O

0 < '“’(”C) “(8) '=w<z>w*<a>

0 <
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The most important property d¥(w;,w2) guarantees the existence of a gen-
eralized line “parallel” to the constant zero function, which itself is a generalized
line, too (see below). Moreover, as it can also be shoWu,ws) fulfills the
axioms of hyperbolic geometry.

LEMMA 2.2. If (w1, w2) is a Chebyshev system on an interyathen there
existsw € L(w1,w2) such thatw is positive on/°.

PROOF If wy has no zero id°, thenw := w; orw := —w; (according to the
sign ofw) will do. Suppose that; () = 0 for some¢ € I°. Due to Lemma 2.1,
without loss of generality we may assume that

wi(z) < 0 (x <& xel)
wiy) > 0 (y>¢& yel).
Choose the elemenis< ¢ < y of I. The Chebyshev property ¢f1,w2) and the
negativity ofw; (z)ws(y) implies the inequality
wa(y) _ wa(x)
wi(y)  wi(z)

Hence

ey o=y |20 < e [ 220

moreover, both sides are real numbers. We show that the generalized line defined
by w := aw; — wo is positive on the interior of .
First observe thab takes positive value at the poifitindeed, by the definition
of w we havew(§) := aw;(§) — w2(€) = —w2(&); on the other hand, foy > &,
the positivity ofw; (y) and the Chebyshev property (@f;, ws) yields—w2 (&) > 0.
If y > &, then the definition ofv implies

wa(y) .

wi(y)’

multiplying both sides by the positive; (y) and rearranging the terms we get,
w(y) == awi(y) — wa(y) = 0.

If x < &, then inequality (2.1) gives that
o w2(x),
wi(z)’
multiplying both sides by the negativg (=) and rearranging the obtained terms,
we arrive at the inequality(z) := aw; (z) — wa(x) > 0.

To complete the proof, it suffices to show thatlways differs from zero on
the interior of the domain. Assume indirectly thaty) := aw;(n) — wa(n) = 0
for somen € I°. Clearly,n # £ sincew(&) > 0. Thereforew, () # 0 anda can
be expressed explicitly:

o>

(67
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If £ < n, choosey € I such that) < y hold. By the positivity ofv; (n)w; (y) and
the Chebyshev property ¢f1, w2),

) _ @)

wi(n) — wi(y)
which contradicts the definition ef. Similarly, if ¢ > n, chooser € I such that
x < n be valid. Then, the positivity ab; (z)w; (n) and the Chebyshev property of
(w1,ws) imply the inequality

which contradicts (2.1). O

As an important consequence of Lemma 2.2, a Chebyshev system can always
be replaced equivalently by a “regular” one. In other words, assuming positivity
on the first component of a Chebyshev system, as it is required in many further
results, is not an essential restriction. Moreover, the next lemma also gives a char-
acterization of pairs of functions to form a Chebyshev system.

LEMMA 2.3. Let(w;,w2) be a Chebyshev system on an inteival R. Then,
there exists a Chebyshev systeni, w3) on I that possesses the following prop-
erties:

(i) wy is positive on/®;

(i) w3 /wi is strictly monotone increasing aff;

(i) (w1, w2)-convexity is equivalent taw}, w3 )-convexity.
Conversely, ifv1,ws : I — R are continuous functions such that is positive
and wq /w1 is strictly monotone increasing, théw;,w2) is a Chebyshev system
overl.

PROOF Lemma 2.2 guarantees the existence of real constaatsd 5 such
thataw; + Swy > 0 holds for allz € I°. Define the functions’f, w3 : I — R by
the formulae

wi = aw; + Pws ws = —fwi + aws.
Choosing the elements < y of I and applying the product rule of determinants,
we get

i I A R bl
= @) 90 A

Therefore(w],w?) is also a Chebyshev system overAssuming thatv] is pos-
itive, as it can easily be checked, the Chebyshev propertypfws) yields that
the functionws; /wj is strictly monotone increasing on the interioriof
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At last, letf : I — R be an arbitrary function and < y < z be arbitrary
elements off. Then, by the product rule of determinants again,

flx)  fly)  f(z) 1 0 0 flx)  fly)  f(z)
wi(z) wily) wi(z) | = |0 a B wi(z) wi(y) wi(z)
wi(z) wi(y) wi(z) 0 -8 «a wa(r) wa(y) wa(z)
flx)  fly)  f(2)
= (@+6%) | wiz) wily) wilz) |,
wa(r) wa(y) wa(z)

which shows that the functiofiis generalized convex with respect to the Cheby-
shev systemw;,ws) if and only if it is generalized convex with respect to the
Chebyshev systeffw;, w3).

The proof of the converse assertion is a simple calculation, therefore it is omit-
ted. O

The following result gives various characterizationgwof, ws )-convexity via
the monotonicity of the generalized divided difference, the generalized support
property and the “local” and the “global” generalized chord properties.

THEOREM 2.4. Let (w1, wy) be a Chebyshev system over an interaluch
thatw; is positive on/°. The following statements are equivalent:

(i) f:I— Ris(wy,ws)-convex;
(i) for all elementsr < y < z of I we have that

fly)  f(z) ’ flz)  fy) ‘
wi(y) wi(?) wi(z) wily) |
‘ wi(y) wi(z) ‘ T | wi(@) wiy) |
wa(y) wa(2) wa(r) wa(y)

(iii) for all =g € I° there existy, 5 € R such that

awi (zo) + Bw2(zo) = f(z0),
awi(z) + Puwz(z) < flz) (v el);

(iv) forall n € N, g, z1,...,2, € T and Ay, ..., A, > 0 satisfying the condi-
tions

> Mwi(zr) = wi(zo)
k=1

> Mwalwr) = wa(zo)
k=1

we have that

Flao) <D Mef(zn);

k=1
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(v) forall zg, z1, 22 € I and )y, Ao > 0 satisfying the conditions
AMwi(21) + Agwi(22) = wi (o)
)\1M2($1) + )\2(.02(.1’2) = (,UQ(]Z())
we have that
f(xo) < Af(z1) + Ao f (22);
(vi) forall elements < p < y of I
f(p) < awi(p) + Pw2(p)
where the constants, § are the solutions of the system of linear equations
f(@) = awi(x)+ Bws(z)
fly) = awi(y) + Pwa(y).

PROOF (i) = (i7). Assume indirectly thatii) is not true. Then, considering
the positivity of the denominators, there exist elements y < z of I such that
the inequality

fly)  f(z)
wi(y) wi(z)
holds or equivalently,

‘ wi(z) wi(y)

w(x) wa(y) ' ~

wi(y) wi(z) wi(z) wi(y)
10 (| 200 5 v | 56 20 )
wi(y) wi(z) wi(z) wi(y)
>0 (10 30 50 [0 58 50 )
Subtracting

Fwan () | 1) @1l2)

wa(z) wa(2)

from both sides and applying the expansion theorem “backwards”, we get

fx)  fly)  f(2)
wi(z) wi(y) wi(z)
wa(z) way) wa(z)
The (w1, w2)-convexity of f implies that the right hand side of the inequality is
nonnegative, while the left hand side equals zero, which is a contradiction.

(13) = (uii). Fix xo € I°. Then, for all element§ < z¢ < x of I,

f(&)  flwo) ' f(zo)  f() ‘
wi(§) wi(@o) | _ | wilzo) wi(z)
‘ w1(§) wi(zo) ' - ‘ wl(xog WIEx; ‘

wa (&)  wa(wo) wa(zo) wo(x

wi(z) wi(y) wi(z)
wi(r) wi(y) wi(z) | > wi(y)
w2(z) waly) wa(z)

f()
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holds, therefore

f(éﬂo)) f((x)) ‘
— i B w10 w1 lr
b= I>£0 wi(xg) wi(z)

wa(wo) wa(w)
is a real number. The positivity assumption@nguarantees that the coefficient
a can be chosen such thab, (zg) + Swa(xo) = f(xo) be satisfied. Rewrite the
desired inequalityww, (z) + Swa(z) < f(z) into the equivalent form

wi(zo) wi(w) f(xo)  f(=x)
(2.2) /8‘ w; $8 w;(:r) Wl(;o) wl(x)

The definition of 3 guarantees that it is valid if; < x. Assume thatr < zg
and choosé& € [ such thatr < xy < & hold. Then, applyindii), we have the
inequality

<0.

fiao 116 ‘ f@)  fzo) ‘
wi(wg) wi(§) wi(w) wi(zo)
st B e

Observe that the denominator of the right hand side is positive, therefore, after
rearranging this inequality, we get

f( xo ‘
G e @) || fao) F@) |
wi(wg) wi(§ wa () wi(zo) wi(z)
wa(ro) wa(§
which, and the choice 03 immediately implies (2.2).
(131) = (iv). First assume thaty = z; = --- = z,. We recall thatv; (x()

andws(zo) cannot be equal to zero simultaneously due to Lemma 2.1; therefore
one of the conditions gives the identi}y;_, \x = 1, and the inequality to be
proved trivially holds. Ifzg, z1, ..., z, are distinct points of , then it necessarily
follows z¢ € I°. Indeed, ifinf(I) € I and indirectlyzy = inf(/), then we have
the inequalities

wi(xo)wa(xg) — wi(zk)wa(x0) >0
forall k = 1,...,n since(w;,ws) is a Chebyshev system dn furthermore, at
least one of them is strict. Multiplying thie” inequality by the positive\;, and
summing froml to n, we obtain

wi(w0) > Mwa(wr) > walwe) D Apws ().
k=1 k=1
But, due to the conditions, both sides have the common val(®, w2 (x(), which
is a contradiction. An analogous argument gives that the casesup(/) is also
impossible, therefore it follows thafy € 7°.
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Choosen, 5 € R so that the relations
awi(xg) + Pwa(zo) = f(=zo)
awi(z) + Pwe(xz) < f(x) (x el

be valid. Then, substituting = =z into the last inequality and applying the
conditions, we get that

> Aef ()
i

Y

Z Apawr (xg) + Z AkBwa(xy)
k=1 k=1

= awi(xo) + Pwa(zo) = f(20),
which gives the desired implication.
(iv) = (v). Taking the particular case = 2 in (iv), we arrive at(v).
(v) = (vi). According to Cramer’s rule, for all elements< p < y of I the
system of linear equations
Awi (@) + Aowi(y) = wi(p)
AMwa(w) + Aawa(y) = wa(p)
has unique nonnegative solutiohgs and\,. Therefore, using the definition of
andg,
flp) < Mf(z)+ A f(y)
= \i(awi(z) 4 wz(x)) + A2 (awi(y) + Bwa(y))
= a(Mwi () + Xowi(y)) + B(Awa(z) + Aawa(y))
= owi(p) + aws(p).
(vi) = (). Expressing the unknowns and$ with w;(z),w;(y) andw;(p),
the inequalityf (p) < awi(p) + Sw2(p) can be rewritten into the form

fx)  fy)
wi(z) wiy) ‘wQ(p)

wi(x
wa(x

) wi(y) (z)  f(y)
) wnly) 'ﬂp)ﬁ () waly) ""10’)*

or equivalently

() flp (y)
wi(z) wi(p) wi(y)
wa(x) wa(p) wa(y)

which completes the proof. O

~—

0<

)

~

In the particular setting where; () := 1 andws(x) := =z, this theorem re-
duces to the well known characterization properties of standard convex functions.
Now the last two assertions coincide: both of them state that the function’s graph
is under the chord joining between the endpoints of the graph. Let us note that in
most of the literature the notion of (standard) convexity is defined exactly by this
property (see the last assertion of the obtained corollary).
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COROLLARY 2.5. Let I C R be an interval. The following statements are
equivalent:

(i) f: I — Risconvex (in the standard sense);
(i) for all elementsr < y < z of I we have that

1Y) = 1) _ f(2) = f),
y—x =Y
(iii) for all o € I° there existy, 6 € R such that
a+ fBro = f(zo), a+fr<flz) (vel)
(iv) forall n € N, zg, z1,...,2, € I @andAq,..., A\, > 0 satisfying the condi-

tions
n n
do=1, > Nk =0
k=1 k=1

we have that .
F@o) <3 e (n);
k=1

(v) forall zg, 1,2 € T and A1, Ao > 0 satisfying the conditions
AL+ X =1, AT+ Aoz = 20

we have that
f(zo) < Mf(z1) + Ao f(w2).

If the base functions; andw- are twice differentiable with a positive Wronski
determinant, then a twice differentiable functign: I — R is (w1, wy)-convex
if and only if the Wronski determinant of the systdifi w;,ws) is nonnegative
(Bonsall, Bon5Q). This result can also be deduced from Theorem 2.4.

As it is well known, (standard) convex functions are exactly those ones that
can be obtained as the pointwise supremum of families of affine functions. As a
direct consequence (and also another application) of Theorem 2.4, an analogous
statement holds fofw; , w2 )-convex functions.

COROLLARY 2.6. Let (w1,w2) be a Chebyshev system over an open interval
I. Then, a functioryf : I — R is generalized convex with respect(to;, ws) if
and only if

f(z) =sup{w(z)|w € L(wi,ws), w< [}

PROOF Assertion(iiz) of Theorem 2.4 immediately implies the representa-
tion above. For the sufficiency, part assert{en of Theorem 2.4 is applied. Fix
the element of the open interval. Take a generalized line = aw + Sws such
thatw < f, furthermore, the elemenis, z- of I and the nonnegative coefficients
A1, Ao that fulfill the conditions

)\10)1(%’1)4‘)\2(#1(3)2) = wl(l‘o)
)\1WQ(.C61)—|-/\2(4}2($2) = u)g(fL’o).
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Then,

AMf(@1) + Aef(z2) = AMw(z1) + Aaw(z2)
= )\ (awl(xl + Bws 1:1)) + X (aw1 x9) + ﬁwg(xg))
= (/\1W1(a: + Aowiq xz)) ()\1w2 (z1) + )\QWQ(CCQ))
= awi(zg) + Pwa(xo) = w(xo).

That is, A1 f(x1) + Aof (z2) > w(xp) for all w < f, hence, according to the
representation, it follows that; f (z1) + Ao f (z2) > f(:co). Thereforef is convex
with respect tqwy, w2), indeed. O

2.2. Connection with standard convexity

The convexity notion induced by two dimensional Chebyshev systems turns
out to be always reducible to standard convexity with the help of a composite
function. This connection enables us to generalize many classical results for the
case of(w;, wy)-convexity directly.

THEOREM 2.7. Let (w1,w2) be a Chebyshev system on an open intefval
such thatw; is positive. The functiorf : I — R is (w1, w2)-convex if and only if
the functiong : we/w; (1) — R defined by the formula

—1
f wo
g:=-—o|—
w1 w1
is convex in the standard sense.

PROOF In this case the functiow, /w, is continuous and strictly monotone
increasing, according to Lemma 2.3. Therefore, the image of the intEbxyathe
functionws /wq is @ nonempty open interval. Consider the identity

fx)  fly)  f(2)
wi(z) wi(y) wi(z)
w2(z) waly) wa(z)

(f/wi)(@)  (flw)(y)  (f/w1)(2)
= wi(@)wr(y)wi(z) 1 1 1

(w2/w1)(@) (w2/wi)(y) (w2/w1)(2)
g(u) g(v) g(w)
= wi(@)w(Ywi(z)| 1 1 1

where

u=(wp/wr)(x) v=(w/u)ly) w=(w2/wi)(2).
The positivity ofw; forces that both sides are simultaneously positive, negative

or zero. That is, the functiofi is (w1, w2)-convex if and only if the functiory is
convex in the standard sense. O
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Theorem 2.7 yields strong regularity properties for generalized convexity. For
example,(w;,wy)-convex functions defined on compact intervals are integrable
which is essential in formulating the main result of the chapter.

THEOREM 2.8. Let (w;,w2) be a Chebyshev system on an interyallf a
functionf : I — Ris (w1, wy)-convex, then it is continuous dfA. Moreover,f is
bounded on each compact subinterval of

PrRooOFR Without loss of generality we may assume thatis positive oni°.
If the function f is (w1, w9)-convex onl, then the composite function in the
previous theorem is convex in the standard sensé oa wy/w;(I). Therefore,
by the well known regularity properties of convex functiopds continuous on
J°. On the other hand, we have that

fmer0e(2).
w1

and the right hand side is continuous Bhwhence the continuity of the function
f follows.

To prove thatf is bounded on the compact subinter{@lb] of 7, we shall
apply Theorem 2.4. Take a generalized line which suppbdsan arbitrary point
xo € I°. Then, inequalityiiz) implies thatf is bounded from below on thehole
interval I. On the other hand, putting := a andy := b into (vi), we get that
f is also bounded by a certain generalized line from abovgdi. Hencef is
bounded, indeed. 0

DEFINITION. Let (w;,ws) be a Chebyshev system on an interdurther-
morew € L(wi,w2) be a generalized line which is positive éh. A function
f + I — R is called generalizedv-convex with respect tdw,ws) if, for all
elements: < y < z of I, the following inequality holds:

fl@)+w(@) fly) —wly) [(z)+w(z)

wi(x) w1(y) wi(z) > 0.
wa(z) wa(y) wa(z)
Substitutingw; (z) := 1, we(z) := x andw := /2, the definition gives

the notion ofe-convexity. By well known results;-convexity is stable: every-
convex function is “close” to a (standard) convex function. As another application
of Theorem 2.7, we prove an analogous resultfar, w,)-convex functions.

COROLLARY 2.9. Let (w1,w2) be a Chebyshev system on an interdur-
thermorew € L(w1,w2) be a generalized line which is positive éh A function
f : I — Ris generalized,-convex with respect t@v; , w9) if and only if there exist
functionsf, g : I — R such thaty is (w1, w2)-convex||h|| < [|w]||,andf = g+ h.

PROOF Assume thaw has the representatian= aw; + Sws and define the
generalized lines] andw; by wi := aw; + fwy andws; := —pw; + awsq, respec-
tively. Then, according to Lemma 2.3, the functiop/w;j is strictly monotone



36 CHAPTER 2. GENERALIZED 2-CONVEXITY

increasing and the generalizeeconvexity of f is equivalent to the inequality

fl@) +wi(e) fly) —wily) f(z)+wi(z)
wi(z) wi(y) wi(2) > 0.
wy () ws (y) w;(2)

Dividing both sides by the positive; (z)w] (y)wj (z) then substituting the argu-
mentsu = (w3 /wi)(x), v = (wi/w])(y) andw = (w3/wi)(2), we get the in-
equality
Fluy+1 F(v)—1 F(w)+1
1 1 1
u v w

=\ —1
F = i o ((,02) .
wi  \wp
That is, F’ satisfies the inequality afconvexity withe = 1. Therefore, there exist

functionsG, H : I — R such thai is convex (in the standard sensglf|| < 1
andF = G + H or equivalently,

* *

f=wi-Go Y2) Lt Ho (2 =:g+h.
1 " 1 "
1 1

Then, Theorem 2.7 and Lemma 2.3 guarantegdhews )-convexity ofg, while
simple calculations implya|| < ||w]|. O

>0

where

2.3. Hermite—Hadamard-type inequalities

The main result provides Hermite—Hadamard-type inequalities for generalized
2-convex functions.

THEOREM2.10. Let (w1, ws) be a Chebyshev system on an intefwab] such
thatw; is positive ona, b[, furthermore, lep : [a, b] — R be a positive integrable
function. Define the poirt and the coefficients ¢y, co by the formulae

AR AR, Y,
<= <W1> (ffw1p>7 B Wl(f)

and
wlp w1 (b) w1 (a) fgzwlp
f wap  wa(b) wa(a) fa wap

‘T ' wi(@) wn(b) 1) wn(b) ‘ '
wo(a) wg(b) wa(a) wa(b)
If f: [a,b] — R is an (w;,ws)-convex function, then the following Hermite—
Hadamard-type inequality holds

b
£) < / fo < erf(a)+ eaf(b).
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PrROOF By the definitions of the poing and the constant, we have the for-
mulae

Sy w2p _ w(§)
fab w1p W1(5)

and

b
| ww=ane)
which yields the identity

b
/ wap = cwa(§).

That is, the left hand side of the Hermite—Hadamard-type inequality to be proved
is exact forf = w; and f = wy, respectively. Letf : [a,b] — R be an arbitrary
(w1, ws)-convex function and chooge € R such that the relations

awi(§) + fwz(§) = [f(§)
awi(x) + Pwa(z) < f(x)
be satisfied for alt: € [a, b]. By Theorem 2.4 such real numbers exist siicean

interior point of the domain. Multiplying the last inequality by the positive weight
functionp, we arrive at

b b b
/ fo>a / wip+ B / wap = a(cwn (€)) + Bews(€)) = ef(€)

which results in the left hand side inequality.
To verify the right hand side one, observe first that the coefficientndcs
are the solutions of the following system of linear equations

b
/wlp = cwi(a)+ cowi(b)

b
/wgp = cwi(a)+ cowa(b).

In other words, the right hand side of the Hermite—Hadamard-inequality is exact,
again, forf = w; andf = ws. Let f : [a,b] — R be an arbitraryw;, wy)-convex
function. By Theorem 2.4, if the real numbexsand 5 are the solutions of the
system of linear equations

fla) = awi(a)+ Pws(a)
f(b) = awi(b) + Buwa(b),
then
f(z) < awi(x) 4+ Pwa(z)
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for all z € [a, b]. Multiplying this inequality by the positive weight functign we
get that

b b b
/ fr < a/ wlPJmB/ wap
a a a

= a(clwl(a) + cowr (b)) + ﬁ(clwg(a) + CQCUQ(b))
= (awl(a) + ﬂwz(a)) + c2 (awl (b) + 5602(5)) =c1f(a) +caf (D),
thus the proof is complete. a

2.4. Applications

Simple calculations show that specializing(x) := 1, wa(z) := x andp = 1,
Theorem 2.10 reduces to the classical Hermite—Hadamard inequality :

COROLLARY 2.11.If f : [a,b] — R is a (standard) convex function, then

(5 <5 [ o K20

The subsequent corollaries present further Hermite—Hadamard-type inequali-
ties for generalized convex functions where the underlying Chebyshev systems of
the induced convexity are the hyperbolic, trigopnometric, exponential and power
systems (to see that the paits;,w2) form a Chebyshev system in each case,
consult the converse part of Lemma 2.3).

COROLLARY 2.12. If f : [a,b] — R is a(cosh, sinh)-convex function, then

2sinh (b - “) f <“‘2”’) < /abf(x)dx < tanh <b;“> (Fla) + F(B)) .

PROOF. If w; := cosh andwy := sinh, thenw; is positive andvs /w1 =
tanh is strictly monotone increasing; hence, according to Lemma(2:3w2) is
a Chebyshev system arid,/w1)~! = artanh. Applying the addition properties
of hyperbolic functions for the identities = (b + a)/2 + (b — a)/2 anda =
(b+a)/2— (b—a)/2, the integrals ofv; andws can be written into product form
via the formulae

b
b b—
/ coshzdr = sinh(b) — sinh(a) = 2 cosh < —; a> sinh ( 5 a>
b —_—
/ sinhazdxr = cosh(b) — cosh(a) = 2sinh (b —; a> sinh (b 5 a) :

Therefore,

fj sinh zdz b+a
5:artanh< : ==

a cosh zdx
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furthermore ,
hzd
_ ;) cosh zdx _ 2sinhb+a.
cosh & 2
To determine the coefficients of the right hand side, first we calculate the numerator
of ¢1:

Cc

2 cosh (b#) ) cosh b
2sinh (H—a) sinh (b—“) sinh b

= 2sinh < 5 > (cosh (b—i—2a> sinh b — sinh (b—i—2a> cosh b)

o b—ay . b+a\ . ofb—a
= 251nh< 5 smh(b— 5 )-251nh< 5 >

Similarly, the numerator of the coefficiesit can be obtained as follows:

cosha 2cosh (HT“) sinh (b_T‘l)
sinha  2sinh (2£%) sinh (552)

= 2sinh <b—a> (Sinh <b+a) cosh a — cosh (m> sinh a>
2 2 2

— osinh (22 sinn (259~ o) — 2simn? (220
2 2 2

On the other hand, the denominators in both cases coincide and have the common
value

>
|
Q

cosha coshb . ] b—a b—a
sinha  sinhb ' = sinh(b — a) = 2sinh (2) cosh ( 5 > ,

therefore
tanh [ 22
c1 = = .
1 Co aln B

Replacing the Chebyshev systeirosh, sinh) with (cos, sin), the obtained
Hermite—Hadamard-type inequality is analogous to the previous one due to the
similar additional properties of trigonometric and hyperbolic functions.

g

COROLLARY 2.13.If f : [a,b] C] -7, Z[— Ris a(cos, sin)-convex function,
then

2sin (b;a) f <a ; b) < /abf(x)dx < tan <b_2a) (f(a) + £(b)).

Observe that both of the previous two Hermite—Hadamard-type inequalities
involve the midpoint of the domain; moreover, dividing by- a and taking the
limit a — b, the coefficient of the left hand sides tendd tavhile the coefficient
of the right hand sides tends 1@2. Therefore these inequalities can be considered
as the “local” version of the Hermite—Hadamard inequality.
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We say that a functiorf : I — R is log-convexif the composite function
folog : exp(I) — R is convex (in the standard sense). In terms of general-
ized convexity, log-convex functions are exactly t{lheexp)-convex ones (consult
Theorem 2.7). The next corollary gives Hermite—Hadamard-type inequality for
log-convex functions (pra01c], [Fin0Q]).

COROLLARY 2.14. If f : [a,b] — Ris a(1, exp)-convex function, then

b a)f <10g exp(bz exp(a ) / i
< < (b—a)exp(b>) _1> fla) + (1_ (b —a) exp(a) >f(b)_

exp(b) — exp(a exp(b) — exp(a)
The last corollary concerning the case of “power convexity” also reduces to
the classical Hermite—Hadamard inequality substitutirg 0 andq = 1:

COROLLARY 2.15. If p < ¢, p,g # —land f : [a,b] C]0,c0[— R is an
(P, x?)-convex function, then

p+1 batl — qatt (g + 1)(bP+1 — qpt1)

/fdx

(bp+l_ap+1)bq (b9t —qat1)pP bq+l aq+l)ap (bp+1_ap+1)aq

p+1 q+1 q+1 B q+1
= aPbl — aibp fla) + aPbd — qabp F(b).

The proofs of the last three corollaries need similar calculations as the first
one, therefore they are omitted.




CHAPTER 3

Generalized convexity induced by Chebyshev systems

In this chapter we formulate Hermite—Hadamard-type inequalities for gener-
alized convex functions where the underlying Chebyshev system of the induced
convexity isarbitrary. The proofs of the main results are based on the Krein—
Markov theory of moment spaces induced by Chebyshev systems. According to
this theory, the vector integral of a Chebyshev system can uniquely be represented
as the linear combination of the values of the system in certain base points of the
domain. The number of the points and also the points themselves, depend only
on the Chebyshev system and its dimension: it turns out that the cases of odd and
even order convexity must be investigated separately. In fact, this is exactly the
deeper reason for the analogous phenomenon in the case of polynomial convexity,
too. Once the base points of the representations are determined, its coefficients are
obtained as the solutions of a system of linear equations. With the help of the rep-
resentations and the notion of generalized convexity, the Hermite—Hadamard-type
inequalities can be verified using integration and pure linear algebraic methods.

In the previous chapters when the basis or the dimension of the studied Cheby-
shev systems are quite special, the base points of the Hermite—Hadamard-type
inequalities can explicitly be given. Unfortunately, under the present general cir-
cumstances, we can guarantee onlydakistencdand the uniqueness) of the base
points, butcannot give any explicit formulae for them

At last, motivated by Rolle’s mean-value theorem, an alternative and elemen-
tary approach is presented for the cases when the Hermite—Hadamard-type in-
equalities involve at most one interior base point of the domain. Some examples
are also presented of these particular cases.

3.1. Characterizations and regularity properties

Let w = (wy,...,wy) be a Chebyshev system over an inter/and denote
the set of all linear combinations of its membersbfw,, ..., w,). A function
is calledgeneralized polynomigbelonging to the system in question) if it is the
element of the linear spafi(w,...,wy,). In terms of generalized polynomials,
generalized convexity can be characterized in a geometrical manner. Namely, a
function is generalized convex if and only if it intersects its generalized polynomial
that interpolates the function in any prescribed points alternately. (The number of
the points depends on the dimension of the underlying Chebyshev system.) More
precisely, we have the following

41
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THEOREM3.1. Letw = (wy, .. .,w,) be a Chebyshev system over an interval
1. Then, for a functiory : I — R, the following statements are equivalent:

(i) fis generalized convex with respectdg
(i) forall y; < --- < y, in I, the generalized polynomial of wy,...,w,
determined uniquely by the interpolation conditions

flye) =wlye)  (k=1,....n)
satisfies the inequalities

under the conventiong, := inf I andy,,+1 := sup I;
(ii) keeping the previous notations and settings, for fixed {0,...,n}, the
following inequality holds

(‘1)n+k(f(y> —w() =0 (yr <y < Yrr1)-

PrROOF First of all, in order to simplify the proof, two useful formulas are
derived. Denote the — 1 tuple obtained by dropping the” component ofw

by w;, and define the determinant¥,, D, ..., D, furthermore the generalized
polynomialw of wy,...,w, by
Dy = | w(y) w(yn) |
Dy = (1) - f(yn)
wi(y1) - @Wik(Yn)
n (_1)k+1Dk
w = Wi -
Dy
k=1

Due to the Chebyshev property af, the determinanf), is positive hence the
definition ofw is correct. Fixy € I. Applying the expansion theorem to the first
column of the following determinant, we get the identity

fy) f) - fyn)

3.1 =D - .

(3.1) wy) wy) - wy) o(f(y) —w(y))

Moreover, ify, < y < yr41 and(zg,z1,...,x,) denotes the increasing re-
arrangement ofy; y1, . . ., yn), the previous identity can be written into the form

flxo)  flx1) oo flan) | _ v
g | f fed e S oD - v,

For the implication(i) = (i7), observe that (3.1) guarantees the required
interpolation property ol in the pointsyy, ..., y,. Clearly,w is uniquely deter-
mined. Suppose thdt: I — R is generalizech-convex with respect taw. Then,
the positivity of Dy and formula (3.2) yield the inequalities to be proved. The
implication (ii) == (4i) is trivial. The proof of(iii) = (i) is completely the
same as the proof of the first assertion. d
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In the standard setting and fixirkg= 1, assertior{iii) gives the classical def-
inition of standard convexity: a function is convex (in the standard sense) if and
only if it is “under” the chord of the graph. Moreover, substituting- 2, we also
get a new characterization of generali2edonvexity that completes Theorem 2.4.
However, the most important application of Theorem 3.1 guarantees strong regu-
larity properties for generalized convex functions.

THEOREM3.2. Letw = (wy, .. .,w,) be a Chebyshev system over an interval
1. If f: I — Ris ageneralizech-convex function with respect to this system and
n > 2, then f is continuous on the interior of. Furthermore,f is bounded on
each compact subinterval &f

PrROOF Chooseyy € I° and fixzg < z1 < -+ < z, in I so thatz; = yo
hold. Denote the generalized polynomials.gf . . . , w,, that interpolatev in the
pointszy . . ., z,_1 andzy, . . ., z, by ™) andw®, respectively. We assume that
n is even (the argument in the odd case is analogous). Then, accordiiig) b
Theorem 3.1, we have the inequalities

wW(y) > woly) > wP(y)  y € [xo,21]
wW(y) <woly) <wP(y) g€ o, ).
On the other handy™ () = wo(yo) andw® (yo) = wo (o). Therefore, due to

the continuity of the generalized polynomial§?) andw(®, we get that both the
left and right hand side limits af, exist at the point, and

lim wo(y) = wo(yo)
Yy—Yo—0

i = ,
i wo(y) wo(%o)

which yields the continuity aofy, at the interior poingg of 1.

To prove the second assertion, we may assumelthata, b]. It is sufficient
to show thatyg is locally bounded at the endpoints bfFix zg < 1 < --- < z,
in I so thatzy = a hold, and denote the generalized polynomialsgf. . ., w,
that interpolatev in the pointszg ..., z,—1 andz,...,z, by w® andw®,
respectively. We assume thais even (the odd case is very similar). Then, by the
previous theorem again, we have the inequalities

w(y) > wo(y) > w@ () y € [wo,21].

On the other hand, the functions?) andw(®) are continuous, therefore bounded
on[a, b]. Hencew is bounded in a right neighborhood of the endpainit can be
similarly proved thaty is locally bounded at the left endpoibt d

In particular, generalized convex functions are integrable on any compact sub-
set of the domain. Let us also mention that the special ease 2 gives the
statement of Theorem 2.8 via another approach in the proof.
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3.2. Moment spaces induced by Chebyshev systems

The geometric study of moment spaces induced by Chebyshev systems was
systematically developed by M. G. Krein. Independently and simultaneously, S.
Karlin and L. S. Shapley elaborated the geometry of moment spaces induced by
the polynomial system. Some of the results of their researches play the key role in
the further investigations.

DEFINITION. Letw := (wy,...,w,) be a Chebyshev system pnb| and
denote the set of all nondecreasing right continuous functions defingd @rby
B([a,b]). The set

M, = {c ER"|c= /ab wdo, o € B([a, b])}

is called themoment space ab.

It can be shown thaM,, is a closed convex cone. More precisely, it is the
smallest closed convex cone that contains the parameterized @(tyevheret
traverses the intervak, b]. For details, seelS66, pp. 38-41]. The following
notion makes the formulation of many theorems quite convenient.

DEFINITION. Theindex I(c) of a pointc € M, is the minimal number of
pointséy, . .., &,, in a representation

c=) opw(&)
k=1

under the convention tha(a) and w(b) are counted with half multiplicity, while
w(§) for & €]a, b[ receives a full count. The poings, . . ., &,, are called theroots
of the representation.

By the celebrated theorem of Caratidory (seeRoc7Q), each point belong-
ing to the conical hull of a given subset&f can be represented as a cone combi-
nation involving at most points of the subset. Due to the Chebyshev property of
w, a surprisingly better upper bound can be establisheditha@rurns out that the
elements of\(,, are cone combinations of approximately2 points of the range
of w. More precisely, the boundary and the interiof\éf, denoted by Bv,, and
IntM,,, can be characterized via the subsequent two theorems due to Krein and
Markov.

THEOREMC. ([KS66, Theorem 2.1. p. 42])\ vectorc € M,, is a boundary
point of M,, if and only if I(¢) < n/2. Moreover, every: € BdM,, admits a
unigue representation

C:Zakw(gk) (gke[a7b}7ak>07k:17"'7n0)
k=1

whereng < 2HL
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THEOREMD. ([KS66, Theorem 3.1. p. 44; Remark 3.1. pp. 45-46; Corollary
3.1. p. 47.]) For eachc € IntM,, there exist precisely two representations of
indexI(c) = n/2. Distinguishing the even and odd cases, the representations in
question are the following.

Casen = 2m:

c = > oqw(&) (& €lab]),
=1

m—1
c = PBow(a)+ > Bwlne) + Bnw®d) (7 €la,b]);
k=1
Casen =2m + 1:

c = aw(a)+ Y opw(&) (& €la,b]),
k=1

c = Zﬂkw(nk)+6m+1w(b) (nk G]a,bD.

k=1
The roots of the representations in both cases strictly interlace.

Let I C R be areal interval andv := (wy,...,w,) be a Chebyshev sys-
tem overI. Then, for pairwise distinct elements,... ¢, of I, the vectors
w(t1),...,w(t,) are linearly independent. This simple observation immediately
implies

THEOREM3.3. The coefficients and the roots of the representations above are
uniquely determined.

Now we present a sufficient condition for a poirtb belong to the interior of
the setM,,. This condition guarantees that the inequalities of the main results have
exactly the required form.

THEOREM3.4. Letw = (w1, ...,w,) be a Chebyshev system[and] and let
p : [a,b] — R be a positive integrable function. Then,

b
c::/ wp € IntM,,.
a

PrOOFE Let us recall thafV(,, is a closed subset &™. On the other hand,
the positivity of p yieldsc € M, therefore it suffices to prove that¢ BdM,,.
Assume indirectly that € BdM,,. We shall distinguish two cases according to
the parity ofn.

Casen = 2m+ 1. The indirect assumption and Theorem C impli¢s) < m
sincel (c) increases at mosy/2. For simplicity, assume thd{c) = m. Then there
are two further possibilities: the representationcahvolves eitherm pairwise
distinct interior base point§ < --- < &, orm — 1 pairwise distinct interior base
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points¢; < - -+ < &,—1 plus both the endpoints andb, respectively. In the first
case we have the representation

c=Y ow(&).
k=1

Due to the Chebyshev property @fand the positivity ofp, we arrive at

0<| wtpt) w&) - Wlta)pltm) W(Em) @(tme1)pltmrr) |
for ty, €lép—1,&[ (kK =1,...,m) where, := a and§,,+1 := b. After inte-
gration with respect t¢¢4, . . ., t,,+1) and using the above representatiorz,ofve
have
§1 5m §m+l

0 < | Jowp w(&) Jer wp ) el wp’

= | [Swp w(&) - f’f;;lwp w(En) YRS S wp |

= f;ol wp w(gl) fiillwp w(im) fabwp‘

= | [Swe wie) o [ wp wigm) TP arw(&) | =0

since the last column is the linear combination of the even indexed columns. Thus
we get the desired contradiction.
Now consider the other case whehas the representation

m—1

c= aow —l— Z apw £k) + anpw (b)
k=1

Due to the Chebyshev property @fand the positivity ofp again, we arrive at

0<|w(a) wt)ptt) w(&) —+ WEm-1) @W(tm)p(tm) w(b) |

for ty €)¢k—1,&[ (K =1,...,m) where&, := a and§,, := b. An analogous
argument to the previous one leads to contradiction.

Casen = 2m. Similarly to the odd case, now we may assume tha} =
m — 1/2. Then there are two possibilities: the representationinfolves either
the endpoint andm — 1 pairwise distinct interior base poin{s < - - - < &,,—1 or
the endpoint andm — 1 pairwise distinct interior base poin{s < - -- < &;,—1.
Applying the same method as above, both cases lead to contradiction again.

3.3. Hermite—Hadamard-type inequalities

The main results concern the cases of even and odd order generalized convex-
ity separately. First we establish Hermite—Hadamard-type inequalities for the odd
order one.
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THEOREM3.5. Letw = (wy, . ..,wan+1) be a Chebyshev system[enb] and
p : |a,b] — R be a positive integrable function. There exist uniquely determined
base pointg, ..., &, andny, ..., n, of Ja, b[ such that

m b m
cowla) + Y @) = [ wp =Y wn) + ).
k=1 @ k=1

The coefficientsy, ..., a,, and 5, ..., Bn+1 are positive and uniquely deter-
mined, too. Furthermore, for any generalizedconvex functiory : [a,b] — R,
the following Hermite—Hadamard-type inequality holds

m b m
cof(@)+ Yt ) < [ o< 30 Auf) + B f(0)
k=1 a k=1

PROOF Let us note thafp is integrable ora, b] by Theorem 3.2. The proofs
of the left and right hand side inequalities need similar methods, therefore, we

shall verify only the left hand side one. Theorem 3.4 guaranteesﬁﬂmb is an
interior point of the moment spad¥,, hence (see Theorem D and Theorem 3.3)
it has the representation

b
(3.3) / wp = apw(a) + Zakw &)

where the coefficientay, ..., a,, and mterlor base pointg, ..., &, are deter-
mined uniquely. Defining, := a and¢,, 1 := b, consider the following system
of linear equations

Em+1 m Ek
/ wp = cow(&o) + Z(Ck/ wp + Ckw(fk))
€m k=1 gkfl

where the unknowns arg, cj, c1,. .., ¢, cm. Due to the Chebyshev property of
w and the positivity of, its base determinant

Di=| w@) [Swp w&) - [ wp wlEn) |

is positive. Therefore, the system has a unique solulioncy, ci, ..., ¢, ¢m).

s “my

On the other hand, representation (3.3) shows that—1,a1,...,—1, ) is
also a solution. Thusyg, a1, ..., a, can be obtained by Cramer’s Rule:

ap = D’f wp w(&) - [or wp w(Em) fg’”“wp‘

3 m
ap = 5"0(&0 fikfle fk+1 f& ﬂwp‘.

Suppose now thaty : [a,b] — R is generahzec{Qm + 1)-convex function
with respect taw. Then, for all elements; of |¢x, {11, the following inequality

holds:
0>‘ f(&) flto) - f(&m) f(tm)’
| w(&) wt) - wém) wtm) |
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Multiplying both sides by the positive(t;) - - - p(¢,,) and integrating on the prod-

uct[&o, &1] X -+ - X [Em, Em1] With respect tdit, . . ., t,,, ), we arrive at the inequal-
ity
N I L) B S VR AV G 1
| w( ffolwp o w(En) [ wp

(
(

)
)
_ | f(&) J&te o f(&n) fgolprr-“waé:mfp
w (o) fﬁgol wp - W(m fgol wp+ -+ fél?“ wp
_ | f(&) »sil fo - flEm) [l fp
w(o) ffol wp - w(&y) f; wp

Observe that the adjoint determinants of each elerﬁéﬁtl fp in the last ex-
pression are equal to zero since their columns are linearly dependent due to (3.3).
Therefore, applying the expansion theorem to the first row, it follows that

b
0 < |we) [Swr w@) o 5w wie |- [ 1

e w@) S wn wlen) S |f6)
o[ wla) o (S e e[|
k=1

Here the coefficient o]f;’ fp is the positive determinariD, while the the coeffi-
cients of f (&), . - . ,f(gm) are exactly the numerators af, . . ., a,, (see above)
since the last colum[f w can be replaced bygm“ wp. After rearranging, we
get the left hand side of the Hermlte—Hadamard-type inequality. O

THEOREM3.6. Letw = (wy, ..., way,) be a Chebyshev system fanb] and
p : |a,b] — R be a positive integrable function. Then, there exist uniquely deter-

mined base pointg, ..., &, andn, ..., n,—1 of Ja, b[ such that

Zakw(gk) —/ wp = ﬂow + Z 5]9“-’ Nk +ﬂmw( )
k=1

The coefficientay, ..., a,, andfy, .. ., 8., are positive and uniquely determined,
too. Furthermore, for any generalizeg-convex functionf : [a,b] — R, the
following Hermite—Hadamard-type inequality holds

m—1

Zakfsk /fp<ﬁof )+ 3 /00 + B0
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PrROOF To prove the left hand side inequality, take the unique interior base

pointséy, ..., &, and coefficientsvy, . . ., ay, fulfilling the representation
b m
(3.4) [ o= i)
a k=1

guaranteed by Theorem 3.4. Definifg:= a and&,,,+1 := b, consider the fol-
lowing system of linear equations

Em+1 m &k
/ wp = Z(C}Z/ w,o+ckw(§k))
gm k=1 ékfl
where the unknowns ak§, ¢y, ..., c,, cm. Due to the Chebyshev property of

and the positivity of, its base determinant

Dii=| [Swp w&) - [ wp wi) |
is positive hence the system has a unique solutigne,, . .., c},, ). On the
other hand, the representation (3.4) shows thdt a4, ..., —1, a,,) is also a so-

lution. Thus, the coefficients can be obtained by Cramer’s Rule:

1

a; = —1‘ ffolwp fgpr f£ wp w(én) fgm“wp‘
1 7 m

o = - 1‘ fgﬁolwp gik,l‘"p Sikﬂwp fmﬂwp ’

Suppose now thaf : [a,b] — R is a generalized2m)-convex function with
respect taw. Then, for all elements;, of |¢, £x+1], the following inequality holds:

0<‘ flto) f(&) - f(&m) f(tm)’
— | w( w(€) o w&n) wtm) |

Therefore,
N A [ CORRTR (GO I el 7
< fgol wp w(&) w(Em) évnnﬂ wp
| e r@) e (e fgol oot [Sm0 g
fgol wp w(‘fl) w(fm) f§01 wp++f£m+1 wp
_ f%; foo f&) o fEm) [lfp
w&) o wEm) [ wp
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In the last expression, the adjoint determinant of each eley)fg%ht fp are equal
to zero since their columns are linearly dependent due to (3.4). Applying the ex-
pansion theorem to the first row, we arrive at the inequality

0 < | [Swp wie) o o wp w(fm)\-/abfp

S S @ o S wn wlen) [l wp | (&)
| e o g e T wr o [ |6
k=2

Here the coefficient oﬁf fp is the positiveDy; moreover, the coefficients of
f(&),. .., f(&n) are exactly the numerators af,, . . ., a,,, since the last column
f; wp can be replaced bj/’éjf“ wp. After rearranging, we get the left hand side
of the Hermite—Hadamard-type inequality.

For the right hand side inequality, take the uniquely determined interior base
pointsny, ..., nm—1 and coefficientss, . . . , G, so that the representation

m—1

b
(3.5) / wp = fow(a +Zﬁkw k) + Bmw(b)

hold. Definingny := a andn,, := b, consider the following system of linear
equations

T m—1 Mk
[ wo=cowtm)+ Y (6 [ wpt cwm) + cnwlnm)
Mm—1 k=1 k-1
where the unknowns ar@), ci,ci,...,c_1,¢m—1,cm. Due to the Chebyshev
property ofw and the positivity of, its base determinant
Dyi=| wim) [yt wp w(m) - [ wp w(nnr) @) |
is positive hence the system has a unique solutiony, c1,...,c,_1, Cm—1,Cm.

The representation (3.5) shows thgh, —1, 51, ..., Bm—1, —1, Bn) IS @lso a so-
lution, therefore Cramer’s Rule can be applied:

By = B wp wlm) - wpo) [ wp “(nm)‘
2
1 m

O = D72 w(770) TZf—l wp 7Z€k+1 wp - f:m—l wp w(nm) ’
1 m— m

B = 5y | W) Jygwp o [ wo wlmen) [T wp k

These coefficients are positive since even changes are needed to transfer the col-
umn fnnll wp to the adequate place.
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If a function f : [a,b] — R is a generalize@2m)-convex with respect ta,
then we arrive at the inequality

foo) S fe flm) o [T fe FOom) ) fp
wim) [T wp w(m) wp W) [ wp

O < Mm—1
whence an analogous argument to the previous one completes the proof.[]

)

Nm—2

3.4. An alternative approach in a particular case

To prove the main results, the main point is the existence of the representa-
tions of Theorem D. These representations can also be considered as systems of
nonlinear equations where the unknowns are the coefficients and the base points.
The number of the equations and the unknowns coincide in each case. In those
cases when only one interior base point is involved, the solubility of the system
of equations can directly be verified without applying the Krein—Markov theory of
moment spaces.

THEOREM 3.7. Let w = (w1,ws,ws) be a Chebyshev system pnb] and
p : [a,b] — R be a positive integrable function. Then, there exist unique elements
&, n of Ja,b] and uniquely determined positive coefficieatsc, and dy, ds such
that

b
aw(a) + caw() = / wp = diw(n) + daw(b).

Furthermore, if a functiory : [a,b] — R is generalized-convex with respect to
w, then the following Hermite—Hadamard-type inequality holds

b
e1f(a) + eaf (€) < / fo < dif(n) + daf (b).

ProoOF We shall restrict the process of the proof only on the existence of the
interior point¢. To do this, define the functiof : [a, b] — R by the formula

[
wi(@) Jrwp [ wip
F(x) ::‘ w(a) [Twp ff wp );: wala) [FTuwap [ wap

wyla) [wsp [ wsp
Then, F' is continuous ora, b] and F'(a) = F(b) = 0. Further on,F'(z) # 0 if
x €]a, b due to the Chebyshev property@fand the positivity op. For simplicity,
we may assume thdft is positive on|a, b[. Therefore, by Weierstrass’ theorem,
there existg €]a, b such that

F = max F.
6) ne

Assume that: €]¢,b]. Then, the maximal property @fyields the inequality

Fa) - F©) | e
0> o w(a) = Jo wp
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The central column of the determinant tendswi(¢) asz tends to§ since the
following estimations are valid fdt = 1, 2, 3:

min[&x] Wk fgp < f; WEpP < max[g,m] Wk fgp

minwy = < < = max wg.
[6.2] Jep Jep J&p [£.2]
Therefore

| wa) w(e) [Pwp|=0.

Choosingr € [a, {] and using the maximal property Bgain, we get the opposite
inequality with the same argument and arrive at the identity

| wa) w©) [lwp|=0

Thus, the linear independencewfta) andw(§) yields that there exist coefficients
c1 andcy such that

b
crw(a) + cow(§) :/ wp.

The right hand side inequality can be verified with an analogous argument, there-
fore the proof is omitted. a

Let us note, that if the weight functignis continuous, then the functiaf is
differentiable and Rolle’s mean-value theorem can directly be applied.

The representations of Theorem 3.7 are linear with respect to the coefficients.
Therefore, in concrete cases, the main difficulty is to determine the interior base
points¢ andn. Without claiming completeness, we list some examples when they
can be determined explicitly.

ExAMPLE 1. If the Chebyshev systelfw,,ws,ws) is defined on[a, b] by
wi(x) =1, wy(x) = sinh z, ws(x) = coshx andp = 1, then
sinhb — sinha — (b — a) cosha
coshb — cosha — (b —a) sinha) a
sinhb — sinha — (b — a) cosh b
coshb — cosha — (b — a) sinh b) B

PrROOF With the above setting, the left hand side representation of Theo-
rem 3.5 reduces to the following system of nonlinear equations

& = 2artanh<

n 2 artan h(

b
c1+c = /1dx:b—a
a
b
cisinha + casinhé = / sinh zdx = cosh b — cosh a
a

b
ci1cosha + cgcoshé = / cosh xdx = sinh b — sinh a
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where the three unknowns arg ¢, andé§, respectively. Multiplying the first equa-
tion by sinh a and subtracting it from the second one, then multiplying again the
first equation bycosh a and subtracting it from the third one, the coefficientan

be eliminated and it follows

co(sinh & —sinha) = coshb — cosha — (b — a)sinha
co(cosh& — cosha) = sinhb —sinha — (b — a) cosha.
Applying the well known additional properties of hyperbolic functions for the

identities¢ = (£ 4+ a)/2 + (£ —a)/2 anda = (£ + a)/2 — (£ — a)/2, the
left hand side of both equations can be written into product form:

2cg cosh (T) sinh ({ ; a) = coshb— cosha — (b—a)sinha

20281nh<§;a>sinh(€;a> — sinhb —sinha — (b — a) cosha.

The left hand side of the first equation differs from zero si@icé a. Therefore,
dividing the second equation by the first one, we get the equation
E+a sinhb — sinha — (b — a) cosha
tanh = - )
2 coshb — cosha — (b — a)sinha
whence the desired expressionsds obtained. For determining, we shell con-
sider the following system of nonlinear equation:

di+ds = b—a
disinhn 4 dasinhbd = coshb — cosha
dycoshn+ dycoshd = sinhb— sinha.

In this case, the coefficient; can be eliminated with a similar method to the
previous one. The new system of equation, due to the additional formulae again,
can be written into the form

b b—
2d; cosh (?) sinh <2H> = coshb— cosha — (b —a)sinhb

b b—
2d; sinh (?) sinh (277> = sinhb —sinha — (b — a) cosh b.

This system, analogously to the previous case, yields the equation

tanh b+mn\ sinhb—sinha — (b—a)coshb
"\ 72 ) T coshib—cosha— (b— a)sinhd’

whence the base pointcan be expressed easily. a

The proofs of the subsequent examples are similar to the previous one, there-
fore they are omitted.
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ExXAMPLE 2. If the Chebyshev systefw;, ws,ws) is defined orfa, b] C] —
m, [ bywi(z) =1, ws(x) = sinzx, w3(x) = cosx andp = 1, then

sina —sinb+ (b — a) cosa
= 2arct —
¢ arctatl (cosa —cosb— (b— )bln@) “
sina —sinb+ (b —a)cosb
= 2arct
1 arctan (cosa —cosb— (b— )smb)

ExamMpPLE 3. If the Chebyshev systelfw,ws,ws) is defined onfa, b] by
wi(x) =1, wa(x) = expx, w3(z) = exp2x andp = 1, then

exp 2b — exp 2a — 2(b — a) exp 2a
& = lo —expa
2(expb —expa — (b—a)expa)

. exp2b—exp2a—2(b—a)exp2b_e b
= 2(expb —expa — (b—a)expb) P

ExAMPLE 4. If, for p > 0, the Chebyshev systefw, ws,ws) is defined on
[a,b] C [0, 4+00[byw;(z) =1, wa(x) = 2P, w3(z) = 2P andp = 1, then

c p+1 bPHL g2+l (2p 4 1)(b— a)a?? o 1/p
2p+1  bptl —aprtl — (p4+1)(b—a)a?
p+1 P a2t (2p 4+ 1)(b— a)b?P B p
K 2 +1 b — @t (p+1)(b—a)b '

The particular casg = 1 of the last example gives a corollary of Theorem 1.10
for polynomially 3-convex functions. Fo3 dimensional Chebyshev systems gen-
erated by arbitrary power functions, the interior base points in general, cannot be
expressed explicitly.

The proof of Theorem 3.7 is applicable for generali2ezbnvexity, and gives
a different approach followed in Theorem 2.10. We can also state right hand side
Hermite—Hadamard-type inequality for generalizecbonvex functions.

THEOREM3.8. Letw = (w1, ws,ws3,wy) be a Chebyshev system|anb] and
p : [a,b] — R be a positive integrable function. Then, there exist a unique element
¢ of Ja, b] and uniquely determined positive coefficientss, cs such that

b
/ wp = ciw(a) + caw(§) + csw(b).

Furthermore, if a functiory : [a,b] — R is generalizedi-convex with respect to
w, then the following Hermite—Hadamard-type inequality holds

b
/ fo < erf(a) + eaf(€) + esf(b).
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HINT. Apply the same argument as in the proof of Theorem 3.7 for the func-
tion F' : [a,b] — R defined by the formula

wila) [Fwip wib) [lwip
F(fﬂ)::‘ w(a) [} wp w(b) fbwﬂ‘iz k) Jywap () sz“’?”
@ @ ws(a) [Fwsp ws(b) fabwsp
wi(a) [Fwip wa(b) [ wap
g
For example, ifw(z) := (coshz,sinhz, cosh 2z, sinh 2x), then one can

check that the interior base point of the inequality is exactly the midpoint of the
domain. Unfortunately, the method fails if someone tries to use it for proving left
hand side Hermite—Hadamard-type inequality for a generalizemhvex function
since, by the even case of Theorem D, the existence of two interior base points
should be guaranteed. For similar reasons, the “existence” part in the proof of
Theorem 3.7 cannot be applied for generalizecbnvex functions if» > 4.






CHAPTER 4

Characterizations via Hermite—Hadamard inequalities

Under some weak regularity conditions, the Hermite—Hadamard-inequality
characterizegstandard) convexity (se&{ic85, Excersice 8. p. 205]). The aim
of this chapter is to verify analogous results faf , w2 )-convexity. To do this, the
most important auxiliary tool turns out to be some characterization properties of
continuousnongeneralize@-convex functions.

4.1. Further properties of generalized lines

In the further investigations, two properties of generalized lines are crucial.
The first one improves the statement of Lemma 2.2 and states that, on compact
intervals, generalized lines are uniformly non bounded.

LEMMA 4.1. Let (w1, w2) be a Chebyshev system on an inter&alhen, for
any compact subinterval dfand positive numbekK, there existso € L(wy,w2)
such thatv > K on the compact subinterval.

PrROOF According to Lemma 2.2, there exist coefficientss such that the
generalized linew + Sw, is positive on the interior of. Therefore, iflx, y] is a
compact subinterval of, m := min{aw, (t) + Swa(t) |t € [x,y]} > 0. Defining
the coefficientsy* and* by the formulae

o= B g OK
' m ' m ’
the generalized line := o*w; + *w. is strictly greater thad on [z, y]. O

The second important property concerns the convergence of generalized lines.
It turns out that pointwise convergence is not only a necessary but a sufficient con-
dition for the uniform convergence of sequences of generalized lines. Let us note
that an analogous result remains true for generalized polynomials in the higher-
order case.

LEMMA 4.2. Let(w;,w2) be a Chebyshev system on an intedydurthermore
w = aw] + Pwe andw,, = awi + PBrw2 (n € N) be generalized lines. Then, the
following statements are equivalent:
(i) there exist elements < y of I such thatv,,(z) — w(z) andw,(y) — w(y);
(ii) the sequences,, andj,, are convergent furthermore,, — « and3,, — g;
(iii) wy, — w uniformly on each compact subset/of
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PROOF (i) = (iz). Applying Cramer’s Rule and the convergence properties
of wy,(z) andw, (y), one can easily get that

‘ w(z) wa(x) ‘ wn(z) wa(z) ’

0o 19w wa(y) g L9n@) @) |
wi(x) wa(x) n—oo | wi(x) wg(x)‘ n—oo
wiy) wa(y) wiy) wa(y)

The convergence gf,, can be obtained similarly.

(13) = (4i7). Let [z, y] be a compact subinterval @f furthermoret € [z, y]
arbitrary. Due to the continuity of the functiong andws, there exists > 0
such that

max{sup\w1<t> | sup|wa(t) r} < K.
[z,y] [z,y]

Therefore,
|wn(t) —w(t)|

| apwi (t) — aw (t) + Brwa(t) — Pwa(t) |
|an — af[wi(t) [+ ] 8n — B wa(t) |
K(lan—al+|8,—=B]) =0
asn — oo; hencew,, — w uniformly on|[z, y|.
(7i1) = (7). Trivial. O

IN A

Under the assumption of continuity, if a function is not convex, then it must be
locally strictly concave somewhere. The following theorem generalizes this result
for non (wy, we)-convexity.

THEOREMA4.3. Let (w;,wsy) be a Chebyshev system on an intedurther-
more f : I — R be a continuous function. Then, the following assertions are
equivalent:

(i) fisnot(wy,ws)-convex;
(i) there exist elements < y of I such thatw < f on |z, y[ wherew is the
generalized line determined by the properties

w(z) = f(z),  wly)=f(y);
(iii) there exist elements < p < y of I and a generalized line such thatv > f
on [z, y], moreover
f@) <w(z), flp)=wlp), [fly) <wly);

(iv) there exist® € I° such thatf is locally strictly (wq, ws)-concave ap, that
is, there exist elemenis< p < y of I such that, foralle <u < p <v <y,
the following inequality holds:

fw)  flp)  f(v)
wl(u) w1 (p) w1 (’U) < 0.
( (v)
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PROOF (i) = (i7). If f is not(wi,ws)-convex, then there exist elements
xo < p < yo of I such thatw(p) < f(p), wherew is the generalized line deter-
mined by the properties(zg) = f(xo) andw(yo) = f(yo) (See assertiofwi) of
Theorem 2.4). Define the functidf : [xo, yo] — R by F' := f — w furthermore
the elements andy by the formulae

x = sup{t|F(t)=0,20<t<p}
y = inf{t|F(t)=0,p<t<yo}.

Clearly,zp < x < p < y < yo hold; moreoverF'(z) = F(y) = 0andF > 0
on |z, y[ due to the continuity of". That is,w(z) = f(z), w(y) = f(y) and
f(t) > w(t)forallt €]z, yl.

(i1) = (i1i). Take the elements < y of I and the generalized linefulfilling
the propertiesu(r) = f(z), w(y) = f(y) andwljyy; < flzy- Define, for all
t € R, the family of “parallel” generalized linas; by the conditions

w(z) =w(z) +t,  wi(y) =wl(y) +1t
Observe first thatv|;, ,; > f(2, for “sufficiently large”¢. Indeed, take the
generalized lineo* satisfying the inequality*|(, ,; > max f|,} and choose
t > 0 such thatu(z) > w*(x) andw(y) > w*(y) hold. (The existence ab*
is guaranteed by Lemma 4.1.) Then|,,] > w*[j;, due to Lemma 2.1 hence

Wtljz,y] > fliz,y- ON the other hand, a similar argument to the previous one yields
the inequalitiesv: |, ) < wljz,y < fl[,y) forallt < 0. Therefore,

to == inf{t € Rlwi|jzp) > flwy} € R

By definition,w;, > f on[z,y]. Assume indirectly that this inequality is strict.
Then, according to the continuity of, and f, there exists > 0 such that

f+6<wt0

on [z, y]. Consider the sequence of generalized lingsletermined by the condi-
tions

wn() = w(x) + to — % won(y) = w(y) + to — %

Lemma 2.1 implies thaty,,) is strictly monotone increasing; further on, according
to Lemma 4.2w,, — wy, uniformly on the compact intervat, y] sincew,,(x) —
wy, (z) andwy, (y) — wy, (v). Hence, there exists) € N satisfying the inequalities
3
Wny < Wy < Wrg + 5
Comparing this to the previous one, it follows that
<
2

which contradicts the definition dfy sincew,, can also be written into the form
wi,—1/n- Therefore, the choicey, satisfies the requirements.

f+ < Wpy < Wiy,
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(7i7) = (iv). Due to the continuity of the functionsandw, we may assume
that p is the minimal element ofz, y[ fulfilling the properties of the assertion.
Then,f(u) <w(u) if z <u <pandf(v) < w(v)if p <v <y. Therefore,

flw)  fp)  fv) w(u) wlp) wv)
wi(u) wi(p) wi(v) | <| wi(u) wi(p) wi(v)
wa(u) wa(p) wa(v) wa(u) wa(p) wa(v)

since the adjoint determinants ffu) and f (v) are positive, furthermoref; andw
coincide atp. Howeverw is a linear combination af; andws hence the left hand
side of the previous inequality equals zero.

(iv) = (4). Trivial. O

The next result shows théb, w,)-convexity, similarly to the standard one, is
a pointwise property.

COROLLARY 4.4. Let (w;,wy) be a Chebyshev system over the open interval
I, furthermoref : I — R be a given function. Then, the following assertions are
equivalent:
(i) fis(wi,ws)-convex;
(i) fislocally (w1,ws)-convex that is, each element of the domain has a neigh-
borhood where it i§w;, wy)-convex;
(i) f is continuous and, for alb € I, there exist elements < p < y of I such

that
fw)  flp)  f(v)
wi(u) wi(p) wi(v) | =0
wa(u) wa(p) wa(v)
forall z <u < p <wv <y(ie.,fislocally convexat each point).

HINT. The implicationgi) = (ii) and(ii) = (i) are trivial. For the impli-
cation(iii) = (i), the last assertion of Corollary 4.4 can be applied, which, in the
case of indirect assumption, immediately leads to contradiction. O

4.2. Hermite—Hadamard-type inequalities and(w;, w2)-convexity

The main results are presented in three theorems. The first and the second ones
concern the left and right hand side inequalities of Theorem 2.10 independently,
while the third one is analogous to the classical Jensen inequality.

THEOREMA4.5. Let (w1, w2) be a Chebyshev system on an intefuab] such
that w; is positive ona, b, furthermorep : [a,b] — R be a positive integrable
function. Define, for all elements < y of [a, b], the functiong (z, y) andc(z, y)
by the formulae

o= (2) (B2), ey = T

w1 [ wip wi(§(z,y))
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Then, a continuous functiofi: [a,b] — R is generalized convex with respect to
(w1, ws) if and only if, for all elements < y of [a, b], it satisfies the inequality

c(z,y)f /ﬁﬁ

PROOF The necessity is due to Theorem 2.10. For the converse assertion,
note first that the mappingr,y) — &(z,y) is continuous in each variable and
takes its value betweenandy since it is a Lagrange-type mean-value. Further
on, c(x,y) andé(x, y) are so constructed that all generalized lines (i.e., the linear
combinations ofu; andws) are the solutions of the functional equation

@.1) el (€e) = [ Yup (@<y).

(For the details, see the proof of Theorem 2.10.) Assume fttsattisfies the in-
equality of the theorem and, indirectly, is n@t;, wy)-convex. Then, according
to assertion(iii) of Theorem 4.3, there exist elements< p < y of I and a

generalized linev such thatf < w on[z,y] and

f(x) <w(z), [f(p)=wlp), [f(y)<w(y).

If, for examplep < &(x,y), then there is €]p, y] such thap = £(x, u) sincef is
a Lagrange-type mean-value. The inequafity) < w(x) and the continuity off
implies thatf < w on a right hand side neighborhood:ohence, applying (4.1),
it follows that

c(z,u)f(&(z,u)) < /ufp < /uwp— o(z, u)w(é(z,u)).

On the other hand, both sides have the common valueu) f(p), which is a
contradiction. O

THEOREM4.6. Let(w;,w2) be a Chebyshev system over an intefwab] such
that w; is positive ona, b, furthermorep : [a,b] — R be a positive integrable
function. Define, for all elemenis< y of [a, b], the functiong; (x, y) andca(z, y)
by the formulae

e ] ol par]
‘wl x) ()" e2(,y) ‘un(x) wi(y) ‘
wa(z) wa(y) wa(z) wa(y)

Then, a continuous functiofi : [a,b] — R is generalized convex with respect to
(w1,w9) if and only if, for all elements < y of [a, b], it satisfies the inequality

/ " 1o < er(@,y) (@) + eale 9) Fly).
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PROOF The necessity is due to Theorem 2.10 again. Conversely, note first
thatc (z,y) andca(x, y) are constructed such that all generalized lines (i. e., the
linear combinations af; andw-) are the solutions of the functional equation

(4.2) / Y = e1(@, ) (@) + ealz, yly).

(For the details, see the proof of Theorem 2.10.) Assume indirectlyftiganot
(w1, wsz)-convex. Then, according to assertigii) of Theorem 4.3, there exist
elements: < y of I and a generalized line such thatv(z) = f(z), w(y) = f(y)
andw < f on]x,y[. Therefore,

/ywp< / fr < al@my)f(@)+ @) fv)

= Cl($,y)W($) + Cg(l‘,y)u)(y)
which contradicts (4.2). a
THEOREM4.7. Let (w1, w2) be a Chebyshev systembandf : I — R be a

continuous function. Keeping the notations of Theorem 4.6 and Theorerfig.5,
(w1,we)-convex if and only if, for all elemenis< y of I, it satisfies the inequality

c(z,y) f(E(z,y) < ealx,y)f(x) + ca(z,y) f(y).

PROOF The necessity part has already been proved in Theorem 2.10. For the
sufficiency, observe first that the functiong;, coc and¢ are so constructed that all
the generalized lines are the solutions of the functional equation

c(z,y)w(E(z,y) = c(z, y)w(@) + ez, ywly) (¢ <y)

since both sides have the common valifevp. Assume indirectly that a function

f : I — R satisfies the inequality of the theorem and is not generalized convex
with respect tqw;, ws). Then, there exist elements< y of I and a generalized
line w fulfilling the conditions

w(x) = f(x>7 whx,y[ < f Jz,y[» w(y) = f(y)

due to Theorem 4.3. Therefore, taking the above observation into consideration,
one can immediately get that

c(z,y)f(¢(z,y) <

(z,9) f(z) + ca(z,y) [ (y)
(2, y)w(z) + c2(, y)w(y)
= c(z,y)w(é(z,y)) < c(z,9)f(E(z,)),

which is a contradiction. O

C1
C1

To give a unified view, the previous results are combined in the subsequent
corollary. This corollary, Theorem 2.4, Corollary 2.6, Theorem 2.7 and Corol-
lary 4.4 together are a comprehensive characterization of generalized convexity
induced by two dimensional Chebyshev systems.
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COROLLARY 4.8. Let (w1, wy) be a Chebyshev system érsuch thatw; is
positive onI°, furthermorep : I — R be a positive integrable function. Keep-
ing the notations of Theorem 4.5, Theorem 4.6 and Theorem 4.7, the following
assertions are equivalent for any functign I — R:

(i) fis generalized convex with respect(to,, w2);
(i) fis continuous and, for all elements< y of I, satisfies the inequality

(. y)f (Ea,y)) < / " i

(iii) f is continuous and, for all elements< y of I, satisfies the inequality

Y
[ 0= a@i@) + al)iw:
(iv) fis continuous and, for all elements< y of I, satisfies the inequality

c(z,y)f (@ y) < ar(@,y)f (@) + ca(x,9) f(y).

The question arises, quite evidentlyhether Hermite—Hadamard-type in-
equalities also characterize generalized convexity in the general case oifaot
give an affirmative answer even in the polynomial case remains an open problem
and may be the subject of further researches.






Summary

The notion of convexity can be extended apply@lgebyshev systerfonsult
the definitions of theNTRODUCTION). The aim of the dissertation is to generalize
the classical Hermite—Hadamard inequality for the extended setting.

In CHAPTER 1 we deal with the case @iblynomial convexitand apply var-
ious methods of numerical analysis, like Gauss-type quadrature formulae (The-
orem 1.1, Theorem 1.2, Theorem 1.3, Theorem 1.4) and Hermite-interpolation.
Two results of Popoviciu (Theorem A and Theorem B) are also crucial. For tech-
nical reasons, further auxiliary tools are developed and applied (see Theorem 1.5,
Lemma 1.6, Lemma 1.7). The main results are presented in two theorems (Theo-
rem 1.8 and Theorem 1.9) distinguishing the parity of the order of convexity:

THEOREM. Letp : [a,b] — R be a positive integrable function. Denote the
zeros ofP,, by &1, ..., &, whereP,, is them! degree member of the orthogo-
nal polynomial system ofa, b] with respect to the weight functidm: — a)p(x),
furthermore denote the zeros @f, by n1,...,n, whereQ,, is them!” degree
member of the orthogonal polynomial system[@rb] with respect to the weight
function(b — x)p(x). Define the coefficientsy, . .., a,, andjy, ..., Gn+1 by the
formulae

b
ay = ng(a)/a P2 (z)p(z)dz,
1 b (z—a)P,(z)
o sk—a/a o= &P
and
I R (s M
K ﬁk/ (@ — )@, (nk)p( )z,

Bmt1 = Q2 /Q2

If a functionf : [a,b] — R is polynomially(2m + 1)-convex, then it satisfies the
following Hermite—Hadamard-type inequality

m b m
cof(@)+ Y auf6) < [ o< 30 Auf) + B f(0).
k=1 a k=1

65
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THEOREM. Letp : [a,b] — R be a positive integrable function. Denote the
zeros ofP,, by &, ..., &, whereP,, is them!” degree member of the orthogonal
polynomial system ofx, b] with respect to the weight functigrn(z), and denote
the zeros of),,,_1 byn1, ..., nm_1 WhereQ,,_1 is the(m — 1)t degree member
of the orthogonal polynomial system @n b] with respect to the weight function
(b — z)(z — a)p(x). Define the coefficients,, ..., a,, andfy,..., Bn+1 by the

formulae ,
= [ &) P&
and
1 b
b = Gagr ). O @@,
_ 1 ) Q)
R el A e T ) P
Bsr = L /b<—>@2<><>d
m+l = b—a)Q2_,0) /, Tz —a)Q,,_1(z)p(x)dx.

If a function f : [a,b] — R is polynomially(2m)-convex, then it satisfies the
following Hermite—Hadamard-type inequality

m—1

m b
3 anf (&) < / o< Bof@)+ S Bef (1) + O (b).
k=1 a k=1

Specializing the weight functiop = 1, the roots of the inequalities can be
obtained as convex combinations of the endpoints of the domain. The coefficients
of the convex combinations are the zeros of certain orthogonal polynomials on
[0, 1] in both cases. Observe that interchanging the role of the endpoints in any
side of the inequality concerning the odd order case, we obtain the other side of
the inequality.

THEOREM. Let, form > 0, the polynomialP,, be defined by the formula

1
1 2 m+1
x é . 2
Pn(2) 1= : : er
; : . :
s B T
Then,P,, hasm pairwise distinct zerog,, ..., A,, in |0, 1[. Define the coefficients
Qg, ...,y by
[P
ay = P2 (x)dx,
PR0) Jo ™
1t P,
ap = 7P (2) dx.

e Jo (@ = Xe)Ph(Ne)
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If a functionf : [a,b] — R is polynomially(2m + 1)-convex, then it satisfies the
following Hermite—Hadamard-type inequality

00f(@) +3 o f((1 = AJa+ ib) < /f

k=1

<> arf(Aea+ (1= Ap)b) + oo f(D).

k=1
THEOREM. Let, form > 1, the polynomials’,, and@Q,,,_1 be defined by the
formulae

11 %
1
a’/‘ = DY PR
Py (x) = _ 2 ) mH ;
1 1
3- m+1)(m—+2
Qm—l(m) = . . . ot )( )
m1 1 ' 1
x (m+1)(m+2) = (@m-12m
Then,P,, hasm pairwise distinct zerog, ..., A, in]0,1[and@,,—1 hasm — 1
pairwise distinct zerog, . . ., um,—1 in ]0, 1], respectively. Define the coefficients
ai,...,apnandB, ..., Bm by
1 Py (x)
oy = dx
’ /o (2 = M) B ()
and
1 ! 5
Gy = / 1—2)Q;,_ dx,
Q%,l(o) 0 ( ) 1( )
1 b a(l = 2)Qu-i(x)
Or = / dzx,
(1= pe)pr Jo (2 — i) @y (pr)
1 1
ﬁm = / fon_ z)dx
20 Jy T

If a function f : [a,b] — R is polynomially(2m)-convex, then it satisfies the
following Hermite—Hadamard-type inequality

m b
> awf (1= at ) < ;- [ fla)da
k=1 @

m—1

< Bof(@)+ D Brf (1= m)a+ pb) + B f(b).

k=1
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In CHAPTER 2 we study the case ajeneralized2-convexityor, in other
terms, (w1, w2 )-convexity. After some technical preambles (such as Lemma 2.1,
Lemma 2.2, Lemma 2.3), the first important result of the chapter (Theorem 2.4)
gives various characterizations of generali2ezbnvex functions:

THEOREM. Let (w1,w2) be a Chebyshev system over an intetvaluch that
w1 is positive on/°. The following statements are equivalent:

(i) f:I— Ris(wi,ws)-convex;
(i) for all elementsr < y < z of I we have that

f(y) f(Z)’ f(z) f(y)‘
wi(y) wi(z) wi(z) wi(y) |
’wl(y) w1 () ’ T | wi(@) wiy) |
wa(y) wa(z) wa(z) wa(y)

(iii) for all zo € I° there existy, 5 € R such that

aw1(wo) + Bwa(zo) = f(x0),
awi(z) + Pwa(z) < f(x) (x € I);
(iv) forall n € N, zg, z1,...,2, € T andAq,..., )\, > 0 satisfying the condi-

tions

> Mwi(zr) = wi(zo)
k=1

D Mwalwr) = wa(zo)
k=1
we have that

Flao) <> Mef(zn);
k=1
(v) forall zg, 21,z € T and A1, Ao > 0 satisfying the conditions
AMwi(z1) + Agwi(22) = wi(zo)
)\1(,02(1'1) + )\20.)2(1‘2) = (UQ(.%())
we have that
f(xo) < Aif(z1) + Ao f (z2);
(vi) forall elements < p < y of I
f(p) < awi(p) + Pw2(p)
where the constants, § are the solutions of the system of linear equations
f(@) = awi(x)+ Bws(z)
fly) = awi(y) + Pwa(y).
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In the standard setting this result reduces to the well known properties of con-
vex functions (compare Corollary 2.5) and also gives another characterization via
generalized supports (Corollary 2.6). It turns out that generalized convexity is
also equivalent to the (standard) convexity of a certain composite function (Theo-
rem 2.7, see below). This connection enables us to state regularity properties for
generalize®-convex functions (Theorem 2.8) and also to generalize the stability
result of (standard) convexity (Corollary 2.9).

THEOREM. Let (w;,wsy) be a Chebyshev system on an open intefvalich
thatw, is positive. The functiorf : I — R is (w1, ws)-convex if and only if the
functiong : we/wi(I) — R defined by the formula

—1
f wo
g:=-—o|—
w1 w1
is convex in the standard sense.

The main result of the chapter states Hermite—Hadamard-type inequality for
generalize®-convex functions (Theorem 2.10).

THEOREM. Let(w;,w2) be a Chebyshev system on an intefwab] such that
w; is positive ona, b], furthermore, letp : [a,b] — R be a positive integrable
function. Define the poirgt and the coefficients ¢y, c; by the formulae

AN IR, _Jaew
<= <w1> <ffw1p> 7 ‘- w1(§)

‘fwlp wi(b ‘

and

wi(a) fazwlp
Jo wap wa(b) wa(a) [, wap

wi(a) wi(b) wi(a) wi(b) |

wa(a) wa(b) wa(a) wa(b)

If f: [a,b] — Ris an (w1, w2)-convex function, then the following Hermite—

Hadamard-type inequality holds

Cy =

Ccl = ’

b
&) < / fo < erfla) + caf (b).

The proof is based on the previous two theorems. Theorem 2.8 guarantees the
integrability of generalized-convex functions defined on compact intervals. The
generalized support and chord properties (assertiof)sand(v:) of Theorem 2.4)
give the left and the right hand side inequalities, respectively.

The aim of GHAPTER 3 is to show the existence of Hermite—Hadamard-type
inequalities for generalized convexity induced d&npitrary Chebyshev systems.

To prove regularity properties for generalized convex functions (Theorem 3.2), the
following characterization result (Theorem 3.1) plays the key role.
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THEOREM. Letw = (w1, ...,w;,) be a Chebyshev system over an intetkal
Then, for a functiory : I — R, the following statements are equivalent:

(i) fis generalized convex with respectdg
(i) forall y; < --- < y, in I, the generalized polynomial of wy,...,w,
determined uniquely by the interpolation conditions

satisfies the inequalities

(D" (fy) —w(y) =0 (Y <y <yps1, k=0,...,n)

under the conventiong) := inf I andy,, 11 := sup [;
(ii) keeping the previous notations and settings, for fixed {0,...,n}, the
following inequality holds

(D" (f(y) —w(®) 20 (g <y < yrsr)-

Unfortunately, under such general circumstances the base points of the
Hermite—-Hadamard-type inequalities cannot be expressed explicitly, we can state
only their existence (Theorem 3.4) and uniqueness (Theorem 3.3). Once hav-
ing this, the inequalities themselves can be verified applying pure linear algebraic
methods and the definition of generalized convexity. The main tool of the chap-
ter is the Markov—Krein theory of moment spaces induced by Chebyshev systems
(Theorem C and Theorem D). Distinguishing the odd and even order cases, the
main results read as follows (Theorem 3.5 and Theorem 3.6).

THEOREM. Letw = (wi,...,won+1) be a Chebyshev system pnb] and
p : [a,b] — R be a positive integrable function. There exist uniquely determined
base pointg;, ..., &, andn,, ..., n, of Ja, b[ such that

m b m
cow(a) + Y @) = [ wp=Y" rwn) + o).
k=1 a k=1
The coefficientsy, ..., a,, and 5, ..., Bne1 are positive and uniquely deter-

mined, too. Furthermore, for any generalizedconvex functiory : [a,b] — R,
the following Hermite—Hadamard-type inequality holds

m b m
aof(a) + 3 arf (&) < / 10 <3 B () + Brsa S(0).
k=1 a k=1

THEOREM. Letw = (wy, ... ,wan) be a Chebyshev systemanb] and letp :
[a, b] — R be a positive integrable function. Then, there exist uniquely determined
base pointg,...,§, andny, ..., nm—1 Of]a, b] such that

b m—1
a

> aww(en) = [ wp=puwla) + Y Bslm) + 5nw)
k=1 k=1
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The coefficientay, ..., a,, andfy, .. ., B, are positive and uniquely determined,
too. Furthermore, for any generalizeg-convex functionf : [a,b] — R, the
following Hermite—Hadamard-type inequality holds

m—1

m b
S arf (&) < / o< Bof(@)+ 3 Buf () + B f (B):
k=1 a k=1

Motivated by Rolle’s mean-value theorem, an elementary approach can also
be followed (see Theorem 3.7 and Theorem 3.8) in some particular cases (that is,
when the dimension of the underlying Chebyshev system is “small”).

The classical Hermite—Hadamard inequality immediately follows from any of
the main results of the first three chapters. Without claiming completeness, at the
end of these chapters several applications and examples are presented.

CHAPTER4 is devoted to proving that the Hermite—Hadamard-type inequality
(Theorem 2.10) obtained for generaliz2g@onvex functionsharacterizegener-
alized 2-convexity. The most important tool is the following characterization of
continuousnongeneralize@®-convex functions (Theorem 4.3):

THEOREM. Let(wi,w2) be a Chebyshev system on an intetdurthermore
f : I — Rbeacontinuous function. Then, the following assertions are equivalent:
(i) fisnot(wy,ws)-convex;
(i) there exist elements < y of I such thatw < f on]z,y[ wherew is the
generalized line determined by the properties

w(z) =f(z)  wly) = fy);
(iii) there exist elements < p < y of I and a generalized line such thatv > f
on [z, y], moreover

f(@) <w(z) [flp)=wlp) [(y) <w(y);

(iv) there existp € I° such thatf is locally strictly (w;,ws)-concave ap, that
is, there exist elemenis< p < y of I such that, foral: < u < p <v <y,
the following inequality holds:

fw)  flp)  f(v)
wi(u) wi(p) wi(v) | <O0.
wa(u) wa(p) wa(v)

The main results are presented in the subsequent three theorems (see Theo-
rem 4.5, Theorem 4.6 and Theorem 4.7). The first and the second one can be
considered as the left and right hand side of the Hermite—Hadamard-type inequal-
ity for generalize®-convex functions (Theorem 2.10); the third one corresponds
to the classical Jensen inequality.
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THEOREM. Let (w;,wy) be a Chebyshev system over an inteffjwab] such
that w; is positive ona, b, furthermorep : [a,b] — R be a positive integrable
function. Define, for all elements < y of [a, b], the functiong(x, y) andc(x, y)
by the formulae

won=(3) () ov-ctiy

Then, a continuous functiofi : [a,b] — R is generalized convex with respect to
(w1,we) if and only if, for all elements < y of [a, b], it satisfies the inequality

c(z,y)f /fp

THEOREM. Let (w1,w2) be a Chebyshev system over an inteffuab] such
that w; is positive ona, b, furthermorep : [a,b] — R be a positive integrable
function. Define, for all elemenis< y of [a, b], the functiong; (x, y) andca(x, y)
by the formulae

e ] ot e
@) w2 T @ wi) |
W2( ) wa(y) ' wa(w) wa(y) ’

Then, a continuous functiofi : [a,b] — R is generalized convex with respect to
(w1,w9) if and only if, for all elements < y of [a, b], it satisfies the inequality

/ " ip < er(@u) fl@) + exwn) ().

THEOREM. Let (w1, w2) be a Chebyshev system brfurthermoref : I — R
be a continuous function. Keeping the notations of the previous two theoféms,
(w1, ws)-convex if and only if, for all elemenis< y of I, it satisfies the inequality

c(z,y) f(E(z,y) < el,y) f(x) + ca(z,y) f(y).

These theorems together give an additional characterization of generalized
convexity (Corollary 4.8). Verifying analogous results in the general setting (or
even in the polynomial case) remains an open problem and may be the subject of
further researches.
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